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searching for transitions among different brane configurations. The combination of Ricci

with the mean curvature flow is examined in detail together with several explicit examples of

deforming curves on curved backgrounds. Some general aspects of the mean curvature flow

in higher dimensional ambient spaces are also discussed and obtain consistent truncations

to lower dimensional systems. Selected physical applications are mentioned in the text,

including tachyon condensation in open string theory and the resistive diffusion of force-

free fields in magneto-hydrodynamics.
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1. Introduction

The theory of geometric flows is a modern subject of common interest in physics and

mathematics. In abstract terms, one is led to consider continuous deformations of geometric

quantities defined on Riemannian manifolds (of fixed topology) starting from some initial

data and evolve it under a given set of parabolic equations with respect to the flow variable

t, called time. When the driving term of the deformation is provided by the curvature, in

various forms, the corresponding geometric evolutions are called curvature flows. These are

naturally divided into two distinct classes, intrinsic and extrinsic curvature flows, depending

on whether one deforms the metric on a Riemannian manifold M by its Ricci curvature

or a submanifold N embedded in M by the associated extrinsic curvature. Since extrinsic

geometry is more elementary than intrinsic geometry, as the simple example of planar

curves illustrates, one expects that extrinsic curvature flows have longer history in science,

as they do. The mathematical motivation for introducing geometric flows varies from one

type to the other and the same also applies to their physical origin and diverse applications.

However, what makes them worth studying is the undisputed fact that such a simple minded

framework, based on geometric analysis, had far reaching consequences and led to ground

breaking results in recent years.

The main qualitative feature of curvature flows is their tendency to dissipate any

possible deviations from canonical geometries associated to fixed point configurations with

special curvature. It is typical that intrinsic flows will deform the metrics towards constant

curvature metrics, if they exist on a given Riemannian manifold. Likewise, extrinsic flows

will deform the embedded submanifolds towards special configurations with prescribed

extrinsic curvature, e.g., minimal submanifolds and generalizations thereof. This behavior

is expected from parabolic equations on Riemannian manifolds, since they share common

properties with the heat equation; actually, the latter is a local linear approximation to

the late stage evolution of geometries in the vicinity of the fixed points. These particular

properties have turned geometric flows into a valuable tool for addressing a variety of

long standing problems in differential geometry, such as the geometrization of manifolds

in low dimensions, and many others. In practice, one should device suitable systems of

flows for a given class of geometric data and follow their evolution towards configurations

with prescribed curvature. In all cases there are many technical obstacles related to the

possible formation of singularities along the flows, and their mathematical classification,

which affect the long time behavior of solutions and need to be accounted for complete

study.

The prime example of intrinsic curvature flow is the celebrated Ricci flow that de-

forms metrics by their Ricci curvature tensor. It first arose in the physics literature as

renormalization group equation for the coupling constant of non-linear sigma models de-

fined in two dimensions, [1]. In this case, the deformation variable t is the logarithm of

the world-sheet length scale of the field theory and the metric of the target space -viewed

as generalized coupling- receives counter-terms that are computable by the perturbative

renormalizability of the two-dimensional quantum field theory. Then, in this context, the

Ricci flow describes the response of the target space metric to different energy (and hence
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length) scales of the quantum theory to lowest order in perturbation theory, [2]. When the

renormalization group equation of sigma models is applied to spaces of positive curvature,

it implies, in particular, that the quantum theory becomes asymptotically free in the ultra-

violet regime, thus justifying the use of perturbative calculations at high energies. This

is analogous to the asymptotic freedom exhibited by non-Abelian gauge theories in four

space-time dimensions, [3], which, after all, motivated the study of renormalization group

flows in toy quantum field theories, such as non-linear sigma models in two dimensions.

The derivation of the beta function equations for non-linear sigma models played a

prominent role in the development of string theory, since fixed points of the Ricci flow are

selected by the requirement of conformal invariance on the world-sheet. Generalizations

in the presence of dilaton and anti-symmetric tensor fields were also considered in the

literature, [4 – 6], thus leading to coupled systems of beta function equations for the massless

modes of closed strings which can be derived from an effective gravitational action in target

space. Critical string theory in curved spaces is only concerned with the existence and

construction of fixed point solutions to these equations. However, it was realized in recent

years that the problem of tachyon condensation in closed string theory can be studied as off-

shell process involving trajectories between different fixed points, via the renormalization

group equations, in the weak gravitational regime. Thus, genuine running solutions of the

Ricci flow, and its generalizations, are of great interest for exploring the problem of vacuum

selection in closed string theory.

The Ricci flow was introduced independently in the mathematics literature as new

analytic tool to attack Poincaré’s conjecture and related geometric problems in three di-

mensions, [7]; in this context it also became known as Hamilton-Ricci flow. Since then

there have been may important developments which are summarized in ref. [8, 9], together

with the complete list of original contributions to the subject. Quite recently, Hamilton’s

programme was brought to completion by solving the long standing geometrization prob-

lem of compact 3-manifolds by the Ricci flow, [10], in all generality; see also ref. [11] for

an overview of this subject. The classification of singularities that may arise in the pro-

cess and the introduction of appropriate entropy functionals for the Ricci flow have played

important role in these studies. However, their relations to physics have not been entirely

clarified so far. It also remains to understand in general mathematical terms the structure

of the generalized Ricci flows, in the presence of anti-symmetric tensor fields, and their

relevance to the formation of singularities. Finally, instanton corrections to the beta func-

tion equations of non-linear sigma models, [12], which are quite customary in physics and

usually affect the nature of the infra-red fixed points, are still awaiting for their proper

mathematical interpretation in the context of geometric analysis by Ricci flow. Non-trivial

infra-red fixed points are known to exist by adding topological torsion terms with θ = π in

sigma models, [13].

The prime example of extrinsic curvature flow is provided by the mean curvature

flow of hypersurfaces that deform by their extrinsic mean curvature vector in the ambient

space. It first arose in the physics literature as idealized (two-dimensional) model for the

motion of grain boundaries in an annealing piece of metal, [14], by drawing analogies with

the motion of soap bubbles and interfaces due to their surface tension; see also ref. [15]
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for a similar model for the development of a surface groove by evaporation-condensation

mechanism. The subject was subsequently generalized and put on firm mathematical base

in ref. [16]. Later, it flourished and became a whole area of intense study in mathematics

up to the present time; see, for instance, the recent textbooks [17 – 19] and references

therein. The mean curvature flow arises, in its original formulation, as gradient flow for

the area functional of a hypersurface embedded in a fixed Riemannian manifold and as such

it encompasses minimal surfaces among its critical points. Thus, it offers a new analytic

tool in the framework of geometric analysis for studying minimal submanifolds, such as

geodesics curves, and various isoperimetric problems associated with them. The structure

of the singularities that may form on the way and the construction of entropy functionals

for this flow are some of the main technical problems which are well investigated by now,

as for the Ricci flow.

Apart from its intrinsic mathematical interest, the mean curvature flow has several

physical applications serving as local model for the evolution of interfaces and the den-

dritic crystal growth, [20], the formation of labyrinthine patterns in ferro-fluids, [21], the

rendezvous problem for mobile autonomous robots, [22], and others that will be discussed

in due course. There are also some variants of this flow, which will not be examined in

this paper, that have led to ground breaking results in the mathematical theory of general

relativity, [23]. However, what has been lacking, up to this day, was an account of the

mean curvature flow in quantum field theory analogous to the Ricci flow.

The primary aim of the present work is to describe in detail the field theoretic mani-

festation of the mean curvature flow, and some of its generalizations, as boundary renor-

malization group equations for Dirichlet sigma models defined on two-dimensional regions

with boundary, [24]. This connection was first pointed out in ref. [25] but without offering

the details. Thus, it turns out that the renormalization group analysis of sigma models

with embedded branes in their target space provide a natural field theoretic framework to

address and interpret many important results that have been derived in the mathematics

literature on the mean curvature flow. At the same time, new ideas can be brought in

mathematics by implementing the perturbative and non-perturbative aspects of quantum

field theories with boundaries in the modern trends and studies. In this context, the mean

curvature flow is tautonymous to the boundary renormalization group flow, to lowest order

in perturbation theory, whereas the fixed points of the flow, which correspond to confor-

mally invariant boundary conditions, are the familiar D-branes in target space. Running

solutions become applicable to the problem of tachyon condensation in open string theory

and to the Kondo effect of screening magnetic impurities by conduction electrons in metals.

There has been considerable activity in recent years on boundary renormalization group

flows and related quantum field theory problems, [26 – 31]. Most of the existing work

concerns the construction of integrable quantum field theories of boundary interactions

and their target space and world-sheet interpretation. These are based on mini-superspace

models of the complete boundary flow, which is defined, in all generality, as dynamical

system in the infinite dimensional space of all possible embedded configurations N in a

given background M. The ambient space can be arbitrary, having its own renormalization

group flow, but to simplify matters only models with boundary interactions on Ricci flat
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target spaces have been considered so far. Even the simplest case of boundary interactions

in the quantum field theory of two free bosons, represented by embedded curves in R2,

is quite rich and has not been fully explored yet. Specific proposals were made in this

context for the exact form of the boundary quantum states of the so called semi-classical

circular, paper-clip and hair-pin curves in R2, which take into account perturbative as well

as instanton corrections, but their validity has only been tested in special limits. Boundary

states associated to more general trajectories of the renormalization group flow do not seem

tractable, to this day, due to the absence of systematic framework connecting the world-

sheet with the target space description of deforming branes. The exact characterization of

fixed points, satisfying appropriate Virasoro constraints, [32], or (in some cases) extended

conformal world-sheet symmetries, is also a difficult problem that has not been brought

to the same level of understanding as for the bulk conformal field theories. Finally, the

existence and construction of non-trivial infra-red fixed points, which take into proper

account non-perturbative effects, as in the case of sigma models with θ = π terms, have

not been investigated in all generality (see, however, ref. [26]–[31] for results in some special

cases). Thus, it is only fair to say that the subject of boundary interactions and associated

flows in quantum field theory is still at its infancy, in many respects, and any new insight

cannot do less but contribute further to its development.

Here, we will concentrate entirely on the target space description of running branes,

as they arise in the semi-classical regime, examine general features of the mean curvature

flow and obtain exact solutions. Although several of these solutions are known in the

mathematics literature, there has been no proper mention or use in quantum field theory

apart from some notable cases. Apart from bridging this gap, new solutions will also be

constructed and studied in detail. Most results will be limited to two dimensions, where

the mean curvature flow assumes its simplest - yet quite non-trivial - form for embedded

or more generally immersed curves in R2. However, generalizations to curved spaces in

two or higher dimensions will also be in focus, in which case the metric of the ambient

space may also deform according to the Ricci flow. This combination of intrinsic and

extrinsic curvature flows is quite natural from the physics point of view, as derived from

the generalized system of beta function equations for non-conformal sigma models with

non-conformal boundary conditions. It should be contrasted to the form of the mean

curvature flow appearing in the mathematics literature, where the metric of the ambient

space is usually fixed once and for all.

Further generalizations entail the inclusion of anti-symmetric tensor fields and Abelian

gauge fields, which substitute the area functional of the mean curvature flow by the corre-

sponding Dirac-Born-Infeld action, [33 – 35]. The presence of fluxes supports the existence

of new solutions and alters the structure of the fixed points, as in the case of Ricci flow. In

this context, the beta function of the gauge field also finds its proper place in mathematics

in terms of the so called (Abelian) Yang-Mills flow. Thus, the sigma model approach to

the closed and open sectors of string theory provide a unifying framework for studying all

these different kind of geometric flows. In the general case one has to consider the coupled

system of beta function equations for all massless modes of the string. The addition of

fluxes will be addressed properly in future works.
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The presentation of the material is organized as follows. In section 2, the theory of

Dirichlet sigma models is summarized and their boundary renormalization group equation

is identified with the mean curvature flow. In section 3, the flow is considered on the

two-dimensional plane and various forms are derived in view of the applications. Entropy

functionals and their relevance to the structure of singularities are discussed. In section 4,

several running solutions on the plane are introduced and studied in detail; they include

special curves that evolve by translations, rotation or scaling, as well as other configurations

that provide consistent mini-superspace truncations of the general evolution equations.

Some of these solutions have already appeared in the physics literature, but several others,

like the Abresch-Langer curves (to be discussed later), have not yet found a proper place;

they may serve as (p, q) models for boundary interactions in an appropriate setup. In

section 5, a thorough analysis of the (in)stability modes associated to special solutions is

performed and general results on the eigenvalues of the linearized operators are obtained

in terms of supersymmetric quantum mechanics. Then, geometric transitions between

different configurations are envisaged for various curves. In section 6, generalizations of

the mean curvature flow are considered on two-dimensional curved spaces. The simplest

examples are provided by curves embedded in the Euclidean black hole background, with

the familiar cigar shape, which is a Ricci soliton. Other examples include curve shortening

problems on simple backgrounds that also deform by the Ricci flow, such as the sphere

and its axially symmetric sausage-like variations. In section 7, we consider the mean

curvature flow of surfaces in R3 and then specialize to cylindrical branes as well as branes

of revolution. Their evolution is reduced to an effective curve shortening problem on the

plane. Finally, in section 8, we present the conclusions and list directions for further work.

There are also three appendices included at the end for completeness. Appendix A

summarizes the embedding equations of hypersurfaces in Riemannian geometry and pro-

vides the appropriate definitions. Appendix B compares the mean curvature flow to other

systems of evolution equations for planar curves and draws connections to integrable sys-

tems. Appendix C reviews the emergence of the mean curvature flow from magneto-

hydrodynamics by dimensional reduction of the resistive diffusion of force-free magnetic

fields. Several exact solutions discussed in the paper can be re-interpreted in this context

and enjoy astrophysical applications.

Parts of this paper can be considered as review of the main mathematical results on

the mean curvature flow, but even in those cases there are supplementary details and

alternative viewpoints that are of interest in physical applications. We hope that their

systematic presentation will prove useful in many respects. The world-sheet description of

various solutions, the role of non-perturbative effects in the characterization of the exact

boundary states, as well as the addition of fluxes will be left to future publications.

2. Dirichlet sigma models

Consider a two-dimensional sigma model associated to maps of a two dimensional surface

Σ into a general Riemannian manifold M with local coordinates Xµ and metric Gµν(X).

It serves as classical model for string propagation in target space M of dimension m,
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whereas Σ is the two-dimensional world-sheet that is generally assumed to have boundary

∂Σ. For practical purposes, Σ is taken to be a disc with connected boundary ∂Σ = S1;

more complicated world-sheets, such as the annulus, may also be considered if higher loop

string corrections are to be included in the study. Furthermore, (some of) the target space

coordinates Xµ are taken to satisfy Dirichlet boundary conditions, i.e.,

Xµ |∂Σ= fµ(yA) , (2.1)

where yA are local coordinates in an n-dimensional submanifold N of M. These bound-

ary conditions ensure that the variations of the sigma model fields along the world-sheet

boundary, δXµ |∂Σ, are tangent to N . According to this, there are m − n Dirichlet condi-

tions imposed on the fields, in general, thus defining N as classical brane embedded in M.

Then, the embedding equations (2.1) follow the general theory of Riemannian geometry

as outlined in appendix A. The extrinsic curvature of the classical branes N , as well as

the Ricci curvature of the ambient space M, are arbitrary at this point, but they will be

shortly constrained by quantum mechanical requirements if conformal invariance on Σ is

to be maintained to lowest order in perturbation theory.

2.1 Ricci and mean curvature flows

With these explanations in mind, the corresponding Dirichlet sigma model is defined by

the classical action

S =
1

4πα′

∫

Σ
d2z Gµν(X)δab∂aX

µ∂bX
ν +

1

2πα′

∮

∂Σ
dτ Gµν(X)V µ(X)∂nXν (2.2)

using conformally flat coordinates on Σ. Here, τ denotes the parameter along the world-

sheet boundary and ∂n is the derivative operator normal to it. The boundary contribution

to the usual two-dimensional action allows for the coupling of arbitrary vector fields in

target space that are perpendicular to the submanifold N . Thus, as it is customary, Gµν(X)

is considered as generalized bulk “coupling constant” of the two-dimensional sigma model

and V µ(X) as the corresponding generalized boundary “coupling constants”. There are

m− n independent vector fields V µ of M that can couple to the normal derivatives of the

fields Xµ at ∂Σ. Note the additional possibility to consider n fields coupled to the tangent

derivatives of the coordinate fields yA in N along the world-sheet boundary ∂Σ. They

naturally form the components of a U(1) gauge field that lives on the brane; together with

the anti-symmetric tensor field they may be used to provide flux generalizations of the

present framework. Here, these additional fields are set to zero, thus only considering pure

metric sigma models with embedded branes of arbitrary codimension. Throughout the

paper, the signature of the world-sheet and of the target space will be assumed Euclidean.

Two-dimensional sigma models, with or without Dirichlet branes, are perturbatively

renormalizable quantum field theories. First, there is the bulk renormalization group flow

of the target space metric that follows from the standard computation of the metric beta

function, [2],

β(Gµν) = Rµν (2.3)
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to lowest order in perturbation theory. It is valid when all components of the curvature are

small for otherwise higher order curvature terms arising from higher orders in perturbation

theory become increasingly important. Such corrections will be excluded here, thus taking

the lowest order result at face value. According to this analysis, sigma models are not scale

invariant, in general, since their target space metric depends on the energy scale of the

quantum field theory. In particular, identifying the logarithm of the world-sheet scale with

the deformation variable t, one obtains the bulk renormalization group equation

∂Gµν

∂t
= −Rµν + ∇µξν + ∇νξµ , (2.4)

by also including the possibility to perform arbitrary reparametrizations along the flow

generated by a vector field ξµ. As such, it coincides with the general form of the (unnor-

malized) Ricci flow for Gµν(X; t). The fixed points of this flow, Rµν = ∇µξν +∇νξµ, are in

accordance to the scale invariance of the world-sheet theory for all vector fields ξµ. Note

that the renormalization of the bulk metric is inert to the existence of embedded branes in

target space.

A special instance of these equations arises for gradient vector fields, ξµ = −∂µΦ, in

which case Φ(X) assumes the role of the dilaton associated to anomalous transformation law

of the target space coordinates of sigma models, δǫX
µ = ǫ∂µΦ, under Weyl transformations

of the world-sheet metric, δǫγab = ǫγab. Recall, in this context, that the dilaton field Φ(X)

enters into the bulk sigma model action as

Sbulk =
1

4πα′

∫

Σ
d2z

√

detγ
(

Gµν(X)γab∂aX
µ∂bX

ν + α′R[γ]Φ(X)
)

(2.5)

in order to ensure that the two-dimensional theory will remain renormalizable if the world-

sheet metric γ is not flat, having non-vanishing curvature R[γ]. Then, the dilaton has its

own beta function which together with the metric beta function yield the modified system

of renormalization group equations of the bulk theory,

∂

∂t
Gµν = −β(Gµν) = −Rµν − 2∇µ∇νΦ , (2.6)

∂

∂t
Φ = −β(Φ) = −(∂µΦ)(∂µΦ) +

1

2
∇2Φ +

26 − m

6α′
. (2.7)

The last term above accounts for the central charge of the model and it can be arranged

so that it cancels in critical string theory. Here, the central terms will be kept, since the

dimension m is arbitrary.

In any case, these beta functions satisfy m differential identities derived from the

non-renormalization condition of the trace of the energy-momentum tensor of the sigma

model, [36],

∂µβ(Φ) = (∂νΦ)β(Gµν) +
1

2
∇ν

(

β(Gµν) − 1

2
GµνGλρβ(Gλρ)

)

, (2.8)

which is valid for all t to lowest order in α′. Weyl invariance of the two-dimensional theory

is only achieved at the fixed points of the modified (Gµν ,Φ) flow; it should be compared to
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the weaker condition of scale invariance that was considered earlier. At the fixed points of

the background metric flow, β(Gµν) = 0, equation (2.8) implies that β(Φ) is constant on

M and can be set equal to zero without loss of generality. Thus, Weyl invariance implies

β(Gµν) = 0 = β(Φ) simultaneously. Finally, note that the dilaton flow is also inert to the

existence of branes in target space, as for the metric.

For sigma models with branes in their target space one also has to consider the depen-

dence of the embedding equations (2.1) on the energy scale of the two-dimensional quantum

field theory. This calculation was first performed in all generality in ref. [24], where it was

found that the deformations of Dirichlet branes, as described by the one-parameter fam-

ily of functions fµ(yA; t) that may depend on the logarithmic world-sheet length scale t,

are driven by their extrinsic curvature vector to lowest order in perturbation theory. The

analysis is performed by first considering the variation of the classical action (2.2) leading

to the following set of compatible boundary conditions,

fµ
,AGµν∂nXν = 0 , V µ = 0 , (2.9)

with respect to the embedding equations of N into M. If one expands around such a

reference configuration, denoted by X̄µ, V µ will decouple completely from the computation.

However, if one considers quantum corrections, there will be counter-terms for V µ that can

be computed by regulating divergences of the relevant graphs with a short distance cutoff

ǫ. Starting with the reference configuration X̄µ, with X̄µ = fµ(ȳA) on ∂Σ and introducing

normal coordinates in target space and on the brane, as usual, the counter-term assumes

the form

∆S = − 1

2π

∮

∂Σ
dτ Gµν

(

gABKσ
ABn̂µ

σ

)

∂nX̄ν(log ǫ) , (2.10)

to lowest order in perturbation theory, and changes V µ accordingly.

Thus, to this order, the associated beta function for the boundary coupling is

β(V µ) = −gABKσ
ABn̂µ

σ . (2.11)

Here, and above, the right-hand side involves the trace of the second fundamental form

Kσ
AB of the brane with respect to the induced metric gAB on it, n̂µ

σ is a complete basis

of unit normal vectors to the brane in M and σ labels the transverse directions. In turn,

one arrives at the following boundary renormalization group equation for the embedding

conditions (2.1),

∂fµ

∂t
= Hσn̂µ

σ − ξµ, (2.12)

using the notation of appendix A for the mean curvature vector normal to the brane. Here,

we have also included the freedom to perform arbitrary reparametrizations along the flow

generated by a vector field ξµ; it is the same vector field that enters into the Ricci flow (2.4).

The resulting equation coincides with the general form of the (unnormalized) mean curva-

ture flow studied in mathematics. We will take this equation at face value and suppress all
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possible higher curvature terms1 which may arise at higher orders in perturbation theory.

Within this approximation, and from now on, the two terms “boundary renormalization

group flow” and “mean curvature flow” will be used without distinction.

The dilaton Φ is introduced by generalizing the Dirichlet sigma model (2.2) to curved

world-sheets, so that the two-dimensional action consists of the bulk term (2.5) plus bound-

ary contributions,

S = Sbulk +
1

2πα′

∮

∂Σ
dτ

(

Gµν(X)V µ(X)∂nXν + α′κΦ(X)
)

, (2.13)

thus also taking into proper account the coupling of the dilaton to the extrinsic curvature κ

of the boundary. The quantum theory is renormalizable and the boundary flow is provided

by equation (2.12) above with ξµ = −∂µΦ. However, it should be noted at this point that

if the ambient space exibits isometries generated by a Killing vector field kµ, the choice

ξµ = −∂µΦ + kµ will affect the mean curvature flow but not the Ricci flow. Recall that

∂(µkν) vanishes identically and so β(Gµν) does not change. As for the dilaton, it can be

consistently taken to satisfy the relation kµ∂µΦ = 0 and β(Φ) also does not change. Thus,

apart from the standard bulk flows, we obtain the following boundary flow

∂fµ

∂t
= Hσn̂µ

σ + ∂µΦ − kµ . (2.14)

Weyl invariance of the quantum Dirichlet sigma model leads to fixed points of the com-

bined buck and boundary renormalization group equations satisfying the general relations

Rµν = −2∇µ∇νΦ , Hσn̂µ
σ = kµ − ∂µΦ , (2.15)

supplemented by the vanishing condition for the dilaton beta function, when Φ is non-

trivial,

(∂µΦ)(∂µΦ) − 1

2
∇2Φ − kµ∂µΦ =

26 − m

6α′
. (2.16)

Fixed points of this type will be discussed later in section 6.

According to all this, Dirichlet sigma models provide a natural framework to realize

and unite both Ricci and mean curvature flows, since one has bulk and boundary renormal-

ization group equations defined with respect to the same deformation variable t. Simple

fixed points correspond to backgrounds with Ricci flat metrics in which there are embed-

ded branes as minimal submanifolds (of arbitrary codimension), so that their extrinsic

curvature vanishes; these are the familiar D-branes. More general fixed points also arise

in the presence of non-trivial dilaton field. In either case, the corresponding solutions are

associated to two-dimensional conformal field theories defined on a disc with conformally

invariant boundary conditions. Away from the fixed points one has deformations of branes

in deforming metric backgrounds, in general, but there is also the simpler possibility to con-

sider Dirichlet branes with non-conformal boundary conditions deforming in backgrounds

1Such terms have been computed systematically in some cases in ref. [37] and [38], in analogy to higher

curvature correction terms computed for the Ricci flow, [2], on general grounds; we thank Arkady Tseytlin

for bringing some of those references to our attention. Further results can also be found in the more recent

work ref. [39].
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with fixed metric satisfying bulk conformal invariance. The simplest example of this kind

arises in the two-dimensional quantum field theory of several free bosons, in which case

M = Rm, and impose non-conformal boundary conditions on ∂Σ so that the branes will

not be embedded as minimal submanifolds. Even in such simple cases there can be many

interesting possibilities, as will be seen later; also the systematic construction of the cor-

responding boundary states in quantum field theory is far from being complete, up to this

day.

2.2 Gradient flow description

It is well known fact that the mean curvature flow of branes can be formulated as gradient

flow of their volume functional,

V [f ] =

∫

N
dny

√

detg , (2.17)

given in terms of the determinant of the induced metric gAB . Indeed, simple calculation

shows that the first variation of the volume with respect to the embedding variables fµ

yields

δV [f ] =

∫

N
dny

√

detg GµνHσn̂µ
σδf ν . (2.18)

In the presence of dilaton one has to consider the effective volume functional

V [f,Φ] =

∫

N
dny e−Φ

√

detg , (2.19)

and derive the generalized mean curvature flow as gradient flow

∂

∂t
fµ(y; t) = Hσn̂µ

σ + ∂µΦ = Gµν δV [f,Φ]

δf ν(y)
(2.20)

with

Gµν =
Gµν

e−Φ
√

detg
(2.21)

which is positive definite. V [f,Φ] can be extended to the full Dirac-Born-Infeld action in

the presence of fluxes, [24].

When an evolution equation arises as gradient flow of the general form

dϕI

dt
= −GIJ δS[ϕ]

δϕJ
, (2.22)

it is natural to investigate its dissipative character and try to associate with it monotonic

functionals in time. S[ϕ] itself evolves in time as

d

dt
S[ϕ] =

∂S

∂ϕI

dϕI

dt
= −GIJ ∂S

∂ϕI

∂S

∂ϕJ
(2.23)

and, therefore, it decreases along the flow when G is positive definite. The mean curvature

flow is an example of this kind, and, naturally, the branes deform by lowering their total

volume towards minimal submanifolds. Of course, there can be other functionals which are
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also decreasing monotonically in time and serve as entropy of the deforming data. Examples

of this will be encountered in section 3 for the mean curvature flow defined in flat ambient

spaces. In general, there is no straightforward procedure to construct entropy functionals

for gradient flows, which may exist irrespective of the positivity of G; see, however, [40],

for some recent general results in this direction.

Similar considerations can be applied to the Ricci flow for comparison. The Ricci flow

arises as gradient flow from the Einstein-Hilbert action

SE[G] =

∫

M
dmX

√
detG R[G] (2.24)

i.e.,
∂

∂t
Gµν(X; t) = Gµν,κλ

δSE[G]

δGκλ(X)
= −Rµν . (2.25)

In this case, the appropriate matrix G is provided by the DeWitt metric in superspace

consisting of all target space metrics on M,

Gµν,κλδGµνδGκλ =
1

4

∫

M
dmX

√
detG

(

δGµνδGµν − 1

2
(δGµ

µ)(δGν
ν)

)

. (2.26)

In the presence of dilaton, the modified Ricci flow is also described as gradient flow

using the Einstein-Hilbert-dilaton action

SE[G,Φ] =

∫

M
dmX

√
detG e−2Φ

(

R[G] + 4(∂µΦ)(∂µΦ) + 2
26 − m

3α′

)

. (2.27)

More precisely, setting ϕI = (Gµν ,Φ), one finds that the beta functions of the metric and

dilaton fields take the form

dϕI

dt
= −GIJ δS[ϕ]

δϕJ
,

δS[ϕ]

δϕI
= −GIJ

dϕJ

dt
(2.28)

with

GIJ =
1

e−2Φ
√

detG







4GµλGνρ Gµν

Gλρ
1
4(m − 2)






(2.29)

and

GIJ =
1

2
e−2Φ

√
detG







1
2(GµλGνρ − 1

2GµνGλρ) Gµν

Gλρ −4






. (2.30)

The latter expression generalizes the DeWitt metric to the metric-dilaton system so

that (2.26) is replaced by

GIJδϕIδϕJ =
1

4

∫

M
dmX

√
detG e−2Φ

(

δGµνδGµν − 1

2
(δGµ

µ − 4δΦ)2
)

. (2.31)

Remarkably, the Einstein-Hilbert-dilaton action is also the total time derivative of the

effective volume of M,

SE[G,Φ] =
d

dt

(
∫

M
dmX e−2Φ

√
detG

)

. (2.32)
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Note, however, that the DeWitt metric is not always positive definite for it is well

known that the Weyl mode fluctuations of the metric on M have negative norm and

they are naturally associated to “time-like” directions in superspace. By the same token,

the extended DeWitt metric on the metric-dilaton superspace also exhibits “time-like”

directions which now arise from a combination of the dilaton and the Weyl mode of the

target space metric. Thus, unlike the case of mean curvature flow, SE does not vary

monotonically with time. However, there is a closely related functional introduced by

Perelman, which serves as entropy for the Ricci flow on compact Riemannian manifolds.

It can be thought as being inspired by string theory constructions combined with a special

choice of reparametrizations along the flow, but the full details are beyond the scope of the

present work. We only mention here that

λ[g] := min{Φ}SE(G,Φ) with

∫

M
dmX e−2Φ

√
detG = 1 (2.33)

provides a monotonically increasing functional along the Ricci flow, [10], by removing the

unwanted “time-like” directions of the DeWitt metric. Then, λ[g] is interpreted as the

lowest eigen-value of the operator −∇2 + R/4, which is defined in terms of the metric at

any given moment t, whereas the constraint on the effective volume of M provides the

normalization of the corresponding eigen-function exp(−Φ). In effect, λ[g] is determined

by applying the variational method of elementary quantum mechanics on M. A simpler

version of this construction appeared first in the physics literature, [41], and enters into the

definition of the (monotonically decreasing) effective central charge along the Ricci flow;

see also ref. [42] for more details and further generalizations, as well as ref. [43] for its

extension to higher orders in α′ and in connection with Zamolodchikov’s c-function, [44].

Other important entropy functionals have also appeared in the literature, [10], but their

physical interpretation is not yet as clear.

All properties and entropy functionals of the bulk flows are independent of the exis-

tence of embedded branes. On the other hand, the analysis of boundary flows depends

crucially on the metric of the ambient space. Important entropy functionals for the mean

curvature flow will be discussed later. It should be noted, nevertheless, that most results

in mathematics are concerned with the mean curvature flow in flat Euclidean space or in

curved Riemannian spaces with fixed metric, apart from some notable exceptions2. The

physical origin of these flows suggests that they should be studied together in all generality

and new entropy functionals should be found.

3. Mean curvature flow on the plane

The simplest framework for studying the boundary renormalization group flow of Dirichlet

sigma models is provided by the two-dimensional quantum field theory of two free fields

whose values at the boundary of the world-sheet are restricted to lie on a given curve. In this

case the target space is R2 and trivially satisfies conformal invariance for the bulk metric

2Some aspects of the combined system of Ricci and mean curvature flows have been considered by

Hamilton, [45]; we thank Klaus Ecker for bringing this to our attention.
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beta function. Thus, the only interesting thing to consider are boundary effects, which

in general are associated to deformations of the Dirichlet curve due to renormalization on

the world-sheet. Since there is no dilaton or any other additional fields in this model, the

boundary renormalization group flow is identical to the mean curvature flow of embedded

curves in the plane,

∂~r

∂t
= Hn̂ − ~ξ , (3.1)

where ~r is their position vector and ~ξ includes the effect of reparametrizations along the

flow; immersed curves can also be considered by allowing for self-intersections.

Although ~ξ will be left arbitrary in the mathematical presentation below, conformal

invariance of the free field theory in the bulk requires that it can only be a Killing vector

field on the plane so that the target space metric remains at its trivial fixed point; otherwise,

one has to reabsorb it into the time evolution of the curve and eliminate it all together.

Turning on a general ~ξ may lead to mathematical simplifications of the curve deformations;

of course, the tangential part of the deformations can always be removed by appropriate

diffeomorphisms. In either case, the mathematical structure of the equation is the same

although the physical interpretation of its solutions differs. We will always insist on having

conformal invariance for the bulk space theory and only allow for non-conformal boundary

conditions.

3.1 Basic general elements

Let us first consider various forms of the mean curvature flow for embedded curves (open or

closed) in the plane, which are convenient for later use and also help to set up the notation.

The points of R2 are parametrized by the position vector ~r with Cartesian coordinates (x, y)

and any given curve will correspond to an orbit ~r(s) = (x(s), y(s)) with respect to an affine

parameter s. Alternatively, one may think of a curve as the graph of a function y = ϕ(x)

when x is identified with s. Such curves are not stationary but they evolve according to

the mean curvature flow with respect to the deformation time t so that the corresponding

trajectories are parametrized in Cartesian coordinates as (x(s, t), y(s, t)) or in equivalent

graph form as y = ϕ(x(t), t).

The tangent vector at each point of the curve is ∂~r/∂s and therefore the unit normal

vector inward to the curve is

n̂ =
1

√

(∂x/∂s)2 + (∂y/∂s)2

(

−∂y

∂s
,

∂x

∂s

)

=
(−ϕ′(x), 1)
√

1 + ϕ′2(x)
. (3.2)

Furthermore, since the induced metric (line element) on the curve is

dl2 =

(

(

∂x

∂s

)2

+

(

∂y

∂s

)2
)

ds2 , (3.3)
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where l is the arc-length (or proper length) on the curve, it follows by definition of the

mean curvature H that

H =
1

(

√

(∂x/∂s)2 + (∂y/∂s)2
)3

(

∂2y

∂s2

∂x

∂s
− ∂2x

∂s2

∂y

∂s

)

=
ϕ′′(x)

(

√

1 + ϕ′2(x)

)3 . (3.4)

The arc-length of the curve can be used to cast the mean curvature flow in the form

∂~r/∂t = ∂2~r/∂l2, which resembles the heat equation, albeit is non-linear, but this is not

very practical for finding explicit solutions. Instead, the mean curvature flow in R2 as-

sumes the following convenient form, also taking into account arbitrary reparametrizations

generated by a vector field ~ξ along it,

∂x

∂t
= −ξx − ϕ′ϕ′′

(1 + ϕ′2)2
,

∂y

∂t
= −ξy +

ϕ′′

(1 + ϕ′2)2
. (3.5)

Note at this point that since y(t) = ϕ(x(t), t) we have

∂y

∂t
=

∂ϕ

∂t
+ ϕ′(x)

∂x

∂t
, (3.6)

which in turn implies the following simple form of the mean curvature flow of graphs

∂ϕ

∂t
= −ξy + ϕ′ξx +

ϕ′′

1 + ϕ′2
. (3.7)

The fixed points are characterized by the second order equation

(

arctanϕ′(x)
)′

= ξy − ϕ′ξx (3.8)

that also includes the effect of arbitrary reparametrizations in their classification.

Another convenient form of the mean curvature flow in R2 follows by considering the

mean curvature H as function of the slope of the curve,

β = arctanϕ′(x) , (3.9)

which is the angle formed by the tangent at each point of the curve with the x-axis. In

terms of this variable, the unit (inward) normal vector is n̂ = (−sinβ, cosβ), whereas the

unit tanget vector is t̂ = ∂~r/∂l = (cosβ, sinβ) at each point. Considering the projection of

the position vector ~r onto the unit normal, S(β) = −~r(β) · n̂, it follows that the Cartesian

coordinates of the curve can be expressed as functions of the slope,

x(β) = S′(β)cosβ + S(β)sinβ , y(β) = S′(β)sinβ − S(β)cosβ , (3.10)

where prime denotes derivative with respect to β. Furthermore, we have the identity

S(β) + S′′(β) = x′(β)cosβ + y′(β)sinβ =
∂~r

∂β
· t̂ =

1

H(β)
(3.11)

since ∂l/∂β = 1/H(β). Then, upon differentiation of equations (3.10), it turns out that

x′(β) = cosβ/H(β) and y′(β) = sinβ/H(β). As a result, the curves are fully determined,
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up to translations, by specifying the mean curvature H as function of the slope β, according

to the relations

x(β) = x0 +

∫ β

0

cos(β′)

H(β′)
dβ′ , y(β) = y0 +

∫ β

0

sin(β′)

H(β′)
dβ′ . (3.12)

When the curves deform by the mean curvature flow, with ~ξ = 0, the evolution for

S(β, t) satisfies the simple relation ∂S/∂t = −H that follows from its definition. Then,

employing the identity (3.11), one easily finds that H(β, t) satisfies the parabolic partial

differential equation
∂H

∂t
= H2 ∂2H

∂β2
+ H3 . (3.13)

This form will be particularly useful for understanding the characteristic features of some

special solutions listed in section 4. When reparametrizations generated by ~ξ are also

included along the flow, one finds ∂S/∂t = −H + ~ξ · n̂ and the differential equation for the

mean curvature generalizes to

∂H

∂t
= H2 ∂2H

∂β2
+ H3 − H2

(

∂2

∂β2
(~ξ · n̂) + ~ξ · n̂

)

. (3.14)

For locally convex closed curves with winding number n, there is a periodicity condition

on both coordinates, x(β + 2πn) = x(β) and y(β + 2πn) = y(β), which implies that

∫ 2πn

0

eiβ

H(β)
dβ = 0 . (3.15)

The extrinsic curvature of such curves satisfies the periodic condition H(β +2πn) = H(β),

but there can be cases of closed curves, as will be seen later, where H(β) has smaller period.

Also note that solutions with periodic extrinsic curvature do not necessarily yield closed

curves no matter how many times they are iterated. An elementary example of this kind

corresponds to the choice H(β) = 1 + cosβ; it yields the curve x(β) = β − tan(β/2) and

y(β) = −log(cos2(β/2)) so that x(β + 2π) = x(β) + 2π and y(β + 2π) = y(β). Likewise,

for H(β) = 1 + sinβ one has x(β + 2π) = x(β) and y(β + 2π) = y(β) + 2π.

Finally, we also include for completeness the form of the mean curvature flow on the

plane using polar coordinates x = rcosθ and y = rsinθ. In this case an arbitrary curve on

the plane can be thought as graph r = ρ(θ) that evolves in time according to

∂ρ

∂t
= −1

ρ

∂β

∂θ
= −ρ2 + 2ρ′2 − ρρ′′

ρ(ρ2 + ρ′2)
. (3.16)

Here, prime denotes the derivative with respect to θ and the evolution of ρ(θ(t), t) is

computed using ∂r(t)/∂t = ∂ρ(θ(t), t)/∂t + ρ′(θ)∂θ(t)/∂t. Arbitrary reparametrizations

along the flow can also be included, if needed, in the system of polar coordinates.

3.2 Entropy functionals, curvature bounds and singularities

The mean curvature flow ∂~r/∂t = Hn̂ tends to deform curves in the direction of their

inward normal vector, as if there were tension forces depending on the magnitude of H at
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(a) (b)

Figure 1: Evolving open and closed curves on the plane.

each point. As a result, open lines tend to become straight, whereas closed curves tend to

become round circles as depicted in figure 1.

The area A surrounded by closed curves γ also tends to decrease at constant pace as can

be easily seen by computing

dA

dt
=

∫

γ

∂r

∂t
rdθ = −

∫

γ

∂β

∂θ
dθ = −

∫ 2π

0
dβ = −2π . (3.17)

Thus, closed curves have the tendancy to shrink, as they become rounder and rounder, [46,

47], until they fully collapse to a point at some time T , which for all practical purposes

can be taken to be zero.

Based on this observation one may consider rescaling the coordinates and redefining

time as

~̃r(s, t̃) =
1√
−2t

~r(s, t) , t̃ = −1

2
log(−2t) , (3.18)

so that the evolution takes the equivalent form

∂

∂t̃
~̃r(s, t̃) = H̃(s, t̃)n̂ + ~̃r(s, t̃) (3.19)

in terms of the mean curvature H̃ of the rescaled curve in R2; it so happens that H̃ =√
−2tH. The variant (3.19) is called normalized mean curvature flow, since, by construc-

tion, it preserves the area surrounded by the rescaled closed curves with respect to the new

time variable t̃. As −∞ < t ≤ 0, we see that −∞ < t̃ < ∞ and so the normalized solutions

exist for all time. The normalized flow can be alternatively viewed as special instance of

the unnormalized flow (3.1) when reparametrizations are performed along it with ~ξ = −~r

and the tilde is dropped for comparison. This will be quite useful later for understanding

the structure of scaling solutions and the characterization of singularities that may form

by the flow.

There are entropy functionals associated to the mean curvature flow. First, let us

consider the backward heat kernel, defined on R2 for all t < 0,

K(~r, t) =
1

√

2π(−2t)
exp

(

− r2

2(−2t)

)

, (3.20)
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and integrate it over the curve by the induced arc-length that also varies with time. It

follows that this is a monotonically decreasing functional, due to Huisken, [48], since

d

dt

∫

C
K(~r, t)dl = −

∫

C
K(~r, t)

(

H +
1

2t
S

)2

dl ≤ 0 (3.21)

by the unnormalized flow ∂~r/∂t = Hn̂ which is applied to closed curves C. Since S = −~r·n̂,

any closed curve that satisfies the special relation

(−2t)Hn̂ + ~r = 0 (3.22)

keeps the entropy functional invariant. Configurations of this kind are self-similar solu-

tions with factorized time dependence. The simplest example is provided by a uniformly

shrinking round circle whose radius varies as
√
−2t and H as 1/

√
−2t.

Likewise, for the normalized mean curvature flow, we consider the Gaussian weight

function

K̃(~̃r) =
1√
2π

exp

(

− r̃2

2

)

(3.23)

that depends implicitly upon t̃, and integrate it over the rescaled curve C̃ by the corre-

sponding induced arc-length l̃. It follows again that this is a monotonically decreasing

functional with respect to the rescaled time, [48], since

d

dt̃

∫

C̃
K̃(~̃r)dl̃ = −

∫

C̃
K̃(~̃r)(H̃ − S̃)2dl̃ ≤ 0 . (3.24)

In this case the extrema of the entropy functional satisfy the normalized self-similar con-

dition

H̃n̂ + ~̃r = 0 , (3.25)

which is attained as t̃ → ∞. The round circle is a fixed point of the normalized flow. Other

non-trivial fixed points also exist, and they are classified by the so called Abresch-Langer

closed curves, as will be seen in the next section.

Next, we discuss certain bounds on H that are important for the classification of

singularities formed by mean curvature flow. There is always a lower bound for the blow-

up rate of the curvature which is derived by applying the maximum principle. Indeed,

specializing equation (3.13) to the maximal value Hmax(t) attained at each instant of time,

we obtain the inequality

∂

∂t
Hmax = H2

max

∂2

∂β2
Hmax + H3

max ≤ H3
max . (3.26)

Closed convex curves have Hmax > 0 and they develop curvature singularities at some finite

time, say T = 0. More generally, it follows

Hmax(t) ≥
1√
−2t

, (3.27)

by integrating the inequality from t to 0, thus establishing a universal lower bound for all

t < 0. The uniformly shrinking round circle saturates this curvature bound at all time.
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On the other hand, it is not at all guaranteed that there is an analogous upper bound

for Hmax(t) based on general grounds. Actually, the singularities of mean curvature flow are

divided in two general categories. Their characterization is based on bounds of |H|max(t),

which is taken in absolute value in general. Type I singularities arise when an upper bound

of the following form also exists,

C√
−2t

≥ |H|max(t) ≥
1√
−2t

, (3.28)

with appropriately chosen constant C < ∞. This is equivalently stated as

C ≥ |H̃|max(t̃) ≥ 1 (3.29)

using the rescaled curvature H̃. In all other cases the singularities that are formed are called

type II. All closed embedded curves in R2 will eventually form type I singularities. Even

if the curve is not convex at a given time it will become convex at later times and follow

the evolution towards the singularity by becoming rounder and smaller, i.e., asymptote

the uniformly contracting circle, [46, 47]. However, one can also imagine deformations of

immersed curves, with self-intersections, whose curvature blows up at faster rate as they

begin to develop cusps and yield type II singularities.

All closed planar curves satisfying the curvature bound (3.28) tend to self-similar

solutions (3.22) in the vicinity of the singularity, [48] (but see also ref. [49] and [50]).

The proof relies on the monotonic behavior of Huisken’s functional whose extrema are

the self-similar solutions. Thus, the classification of type I singularities reduces to the

classification of self-similar solutions, which are completely known on the plane. The

circle is the only embedded curve of this kind whereas the other solutions are special

self-intersecting convex curves. In higher dimensions one may consider hypersurfaces that

evolve by their mean curvature vector in flat space and generalize the constructions and

results mentioned above. However, there is no systematic classification of the self-similar

hypersurfaces that extremize the corresponding Huisken functional unless the hypersurface

is compact with positive mean curvature. As a result, the general structure of type I

singularities is less understood in higher dimensions.

Type II singularities arise when the curvature blows faster than 1/
√
−2t as t → 0−. In

this case there is a sequence of times tn → 0− such that the curve obtained by appropriate

magnification at each instance tn, so that its maximal curvature becomes 1, will converge

to a translating solution, [49] (but see also ref. [50]). The latter is a very special solution

of the mean curvature flow that will be discussed later together with the scaling (self-

similar) solutions on the plane. A typical example of this kind of singular behavior arises

from the evolution of a cardioid. It is a convex closed curve with winding number 2 that

self-intersects once and consists of two loops, the inner and outer, touching each other. It

can be intuitively seen that the inner loop will contract faster and form a cusp before the

outer loop has a chance to shrink to zero size. Then, as one zooms closer and closer to the

diminishing inner loop, as it begins to form a cusp, the shape of a translating solution will

emerge according to the general statement above. The basic idea is illustrated in figure 2

below focusing on the rescaled region of maximal curvature.
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Figure 2: A cardioid leading to cusp formation under the flow.

Similar results apply to the structure of type II singularities of evolving compact hy-

persurfaces of positive mean curvature in flat space.

For convex planar curves γ there is an additional entropy functional which is defined

as follows,

E(γ) =
1

2π

∫

γ
ds H logH =

1

2π

∫ 2π

0
dβ logH . (3.30)

It can be easily seen following, for instance, [18] that

d2E
dt̃2

≥ 2

(

(

dE
dt̃

)2

+
dE
dt̃

)

, (3.31)

using the normalized variant of the flow that exists for all t̃ < ∞. Note that if dE/dt̃

were positive at some time, it would blow up at later times because d2E/dt̃2 would also be

positive. However, this is impossible for E exists for all values t̃. Thus, we conclude that

dE
dt̃

≤ 0 (3.32)

for all t̃ < ∞. The round circles extremize E .

This functional is the mean curvature analogue of a similar expression

H =

∫

d2X
√

detG R logR (3.33)

introduced for the Ricci flow on two dimensional surfaces, [51]. Using the normalized Ricci

flow on compact surfaces with R > 0, which are analogous to convex planar curves, it

follows that H decreases monotonically. Furthermore, the curvature remains bounded for

all time, as

C ≥ R ≥ c > 0 , (3.34)
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with appropriately chosen constants c and C < ∞. These bounds are analogous to (3.29)

for the normalized mean curvature flow. Note that the round spheres extremize H.

Finally, another important result on the subject states that the number of self-

intersections of immersed planar curves can not increase by the mean curvature flow in

the forward time direction, [52].

It will be interesting to explore new methods for integrating the mean curvature flow

on the plane, at least formally, and devise a Lax pair formulation for it, if it is at all appro-

priate, by developing analogies with the algebraic treatment of various intrinsic curvature

flows on two dimensional surfaces, [53]. Until then, we can only rely on the general math-

ematical results concerning the qualitative behavior of the flow, as outlined above, and

the construction of various explicit solutions that will follow next. Note at this end that

there are other type of evolution equations for planar curves leading to known integrable

systems, as explained in appendix B that is only included for comparison.

4. Special solutions on the plane

Several exact solutions of the mean curvature flow on R2 are listed and comments are made

relating their appearance in the physics and mathematics literature. Many details will be

filled in for completeness and a number of new results will also be derived. We will speak

in Euclidean terms calling a planar curve D1-brane, as opposed to the Lorentzian version

of D0-branes having one-dimensional world-volume.

Although boundary interactions in quantum field theory provide the main framework

for our work, as in ref. [26]–[31] where a few explicit solutions have been constructed, it

should be noted that various running solutions were also constructed a long time ago in

different physical context. They first appeared in the original work on the motion of grain

boundaries in an annealing piece of metal, [14], and later in the magneto-hydrodynamic

theory of resistive diffusion of force-free magnetic fields, [54], which is summarized in ap-

pendix C. Frequent references will be given to them at appropriate places in the text. In

mathematics, some of these solutions are briefly discussed in the textbook [18] and refer-

ences therein. However, not all of them have yet found their exact place in quantum field

theory.

4.1 Trivial fixed points

The fixed points of the mean curvature flow (3.7) are simply described by ∂ϕ/∂t = 0 and

ϕ′′(x) = 0 when no reparametrizations are taken into account (ξ = 0). Obviously, these

are time invariant straight lines of the general form

y = ϕ(x) = ax + b (4.1)

whose extrinsic curvature vanishes identically. They represent D1 branes on the plane,

which are compatible with conformal invariance. D0 branes also arise as points with fixed

position in the (x, y) plane; they can be thought as the end-point of shrinking closed planar

curves.
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→ y

Figure 3: The hair-pin (or grim-reaper) curve on the plane.

4.2 Translating solution

The simplest static solution of equation (3.7), modulo reparametrizations, corresponds

to the choice of a translational Killing vector field along the y-direction, ξ = ∂/∂y with

components ξx = 0 and ξy = 1, up to a constant factor v. Then, it follows that the shape

of the curve is given by the graph of the function

y = ϕ(x) = −1

v
logcos(vx + a) + b , (4.2)

where a and b are integration constants. Setting them equal to zero amounts to placing

the tip of the curve at the origin of the coordinates (x, y), in which case case it asymptotes

the lines x = ±π/2v.

The resulting curve is called grim-reaper in the mathematics literature or hair-pin in

the physics literature, [27, 28], where it was encountered before. The same configuration

was also found in the earlier works [14] and [54] (but see also ref. [20] among others). It

is a translating solution along the y-direction for it can be alternatively viewed as moving

linearly in time along the y-direction with constant spead v (in appropriate units), i.e.,

∂ϕ/∂t = v, so that

y = ϕ(x, t) = vt − 1

v
logcos(vx) . (4.3)

The graph of this configuration is given in figure 3 below.

A hair-pin facing in the opposite direction is obtained by setting y → −y, in which

case the corresponding time dependent configuration translates linearly in time towards

the negative y-direction. Thus, the sign of v selects one of the two possible cases: the

hair-pin or the anti-hair-pin. The slope of these curves is simply given by β = vx, in which

case their mean curvature is

H(β) = vcosβ . (4.4)

The solution satisfies the special condition H ′′(β) + H(β) = 0 that follows from equa-

tions (3.13) or (3.14) depending on how one views the evolution. Likewise, a translating

solution along the x-axis, in either direction, arises by reversing the role of the x and y

coordinates.

In all cases, the hair-pin solutions represent D1 branes supported by a linear dilaton

Φ in the coordinate of the translating direction. For example, a hair-pin that moves with

constant velocity v along the y-axis has ξµ = −∇µΦ with Φ = −vy. In this respect,

the translating solutions are examples of mean curvature solitons that do not affect the
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conformal field theory on the plane. Also, according to the variational method of section

2.2, in the presence of dilaton, such configurations represent geodesics on the plane equipped

with the metric

ds2 = e2vy(dx2 + dy2) . (4.5)

This is a Ricci flat metric as it relates to the Euclidean frame in polar coordinates by the

change of variables

vr = evy , θ = vx , (4.6)

so that ds2 = dr2 +r2dθ2 with 1 ≤ vr ≤ ∞ and −π/2 ≤ θ ≤ π/2 for v > 0. This maps to a

domain on the right half-plane plane, which is exterior to the disc vr < 1, and the hair-pin

corresponds to the vertical straight line vrcosθ = 1 that is tangent to its boundary.

The hair-pin is a gradient soliton, which should be thought as the mean curvature

analogue of the well known Ricci flow soliton associated to the intrinsic geometry of a two-

dimensional cigar, [51]; the latter has the interpretation of a two-dimensional Euclidean

black hole in conformal field theory, [55]. In appropriate context, the hair-pin serves as

model for studying tachyon condensation in open string theory (see, for instance, [56] and

references therein). When v = 0 the configuration becomes straight line, y = 0, as viewed

from the origin of coordinates; alternatively, when this limit is considered from the view-

point of an asymptotic “observer”, situated at y = ∞, the hair-pin looks like a semi-circle

with infinite radius.

Finally, we note the important property of this solution to exhibit just one point of

maximal curvature situated at its tip. This is not accidental but consequence of a general

theorem stating that any strictly convex solution of the mean curvature flow that exists

for all time −∞ < t < ∞ and the mean curvature becomes maximum at only one point,

must necessarily be a translating soliton, [57]. This is an important ingredient that goes

into the study of type II singularities, which look like a hair-pin following a sequence of

appropriate magnifications that keep the maximal curvature normalized to a fixed value,

v = 1, through out the evolution.

4.3 Rotating solution

Using the rotational Killing vector field ξ = ∂/∂θ = −y∂/∂x + x∂/∂y on the plane, up

to an overall constant factor ω, other static solutions of (3.7) follow by integrating the

differential equation
(

arctanϕ′(x)
)′

= ω
(

x + yϕ′(x)
)

. (4.7)

Then, for a graph y = ϕ(x), one obtains

arctanϕ′(x) =
ω

2
(x2 + y2) + c =

ω

2
r2 + c (4.8)

in terms of the polar coordinate r. Setting the integration constant c equal to zero amounts

to placing the curve at the origin of the coordinate system so that it starts tangentially to

the x-axis. Further integration of the equation can not be performed in closed form, but

this is no problem for drawing the shape of the resulting curve. Its slope at each point, as
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Figure 4: Yin-Yang curve on the plane.

it reads from equation (4.8), is proportional to the distance-squared from the center, and,

therefore, it follows the shape of an unbounded spiral as depicted in figure 4.

Thus, the integral curve of the differential equation (4.8) is the unique rotating solution

on the plane, which is another example of a mean curvature soliton also known as Yin-Yang

curve in the mathematics literature; in physics it has appeared much earlier in ref. [14].

Half of it is plotted in figure 4a, whereas the complete curve appears in figure 4b by also

plotting its symmetrical part about the origin, i.e., its point of inflection. The turns of

the spiral are separated by approximately 2π/ωr for large r. An alternative (dynamical)

description of the solution is provided by a revolving spiral with constant angular velocity

ω about the origin, with simple time dependence

arctanϕ′(x(t), t) =
ω

2
(x2 + y2) + c =

ω

2
r2 + ωt , (4.9)

without making use of the compensating Killing vector field that stabilizes its rotation. If

polar coordinates were used on the plane, the rotating solution (4.9) would be the graph

of a linearly evolving function r = ρ(θ − ωt); in this case, equation (3.16) simplifies a lot

since ∂/∂t = −ω∂/∂θ when acting on ρ. In this frame, the mean curvature of the solution

specializes to H(β, t) = H(β − ωt) and satisfies the non-liner equation in β

H2(β)
(

H ′′(β) + H(β)
)

+ ωH ′(β) = 0 , (4.10)

as follows from equations (3.13) or (3.14) depending on the view-point. It is a non-trivial

task to find the solution in closed form.

The rotating solution represents an evolving infinitely long D1 brane with one point

held fixed at the origin. Its existence, as static solution of equation (3.7), is attributed to

the Killing vector field ~ξ = ω(−y∂/∂x+x∂/∂y) having ~∇×~ξ = 2ω 6= 0. As such, ~ξ can not

be derived from a potential as gradient field, and, hence, there is no dilaton field associated

to the static form of the solution that could account for its boundary conformal field theory

description. Thus, unlike the grim-reaper, the Yin-Yang curve is not a gradient soliton. It

corresponds to a boundary quantum state that does not satisfy conformal invariance, but

it runs, via rotation, with the world-sheet energy scale. The sign of ω distinguishes the

two different modes of rotation around the clock.

– 24 –



J
H
E
P
0
6
(
2
0
0
7
)
0
5
7

4.4 Scaling solutions

Another type of static solutions of equation (3.7) follow by considering the vector field

ξ = r∂/∂r = x∂/∂x + y∂/∂y, up to a constant factor c, which generates dilations of the

plane. These are called scaling (or homothetic) solutions since they evolve by overall scaling

when the time dependence is reinstated at the expense of suppressing the corresponding

reparametrizations along the flow. As such, they satisfy the defining relation

(

arctanϕ′(x)
)′

= c
(

ϕ(x) − xϕ′(x)
)

(4.11)

for y = ϕ(x). Note, however, that the generator ~ξ of dilations is not a Killing vector field

on the plane, although ξµ = −∇µΦ with

Φ(x, y) = − c

2
(x2 + y2) . (4.12)

If conformal invariance of the quantum field theory of the plane is to be maintained,

the homothetic solutions will unavoidably arise as time dependent curves with factorized

t-dependence so that

y = ϕ(x(t), t) =
√

2ct ϕ

(

x√
2ct

, 1

)

. (4.13)

The sign of c determines the basic features of time evolution. Note that in all cases ct

should be strictly non-negative. Thus, for c < 0, the scaling solutions are shrinking as t

runs from −∞ to some finite time that has been set equal to zero without loss of generality;

the corresponding configurations have well defined ultra-violet limit and they fully collapse

to a point at t = 0. On the other hand, for c > 0, the scaling solutions are expanding as t

runs from 0 to ∞ and exhibit a well-defined infra-red limit.

Irrespective of the uses and interpretation of the scaling configurations, their x-

dependence follows by seeking solutions of equation (4.11). Alternatively, the corresponding

curves can be described using the parametric form of the mean curvature flow as

Hn̂ = c~r (4.14)

in terms of their position vector ~r = (x, y). As such, they may also be viewed as geodesics

on the plane endowed with the metric

ds2 = ec(x2+y2)(dx2 + dy2) , (4.15)

which is not Ricci flat but it is induced by the potential (4.12) according to the variational

method of section 2.2 in the presence of dilaton. These are the scaling solutions that

characterize the extrema of Huisken’s entropy functional. In the physics literature, they

first arose in the early work [14] and later in magneto-hydrodynamic models for the solar

flares, [54], where they were discussed in moderate detail.

Another equivalent description is obtained by considering the mean curvature flow

in polar coordinates, as in equation (3.16), with factorized t-dependence ρ(θ(t), t) =

R(θ)
√

2ct. Then, the slope of the curves depends only on θ, as β(θ), and satisfies the

equation
dβ

dθ
= −cR2(θ) . (4.16)
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This formulation is advantageous for drawing the shape of the homothetic curves at fixed

t. For this, let us assume without loss of generality that the curves are placed on the plane

in a way so that β(π/2) = 0, meeting the y-axis perpendicularly at some point. Then,

simple integration of equation (4.16) yields

β(θ) = c

∫ π/2

θ
R2(θ)dθ , (4.17)

stating that the slope of any such curve is proportional to the area subtended by the

corresponding radius vector as it moves away from its vertical reference position. Clearly,

the curves are placed symmetrically about the y-axis, since β → −β when θ → π − θ.

Finally, note that the mean curvature of scaling solutions factorizes as H(β, t) =

H(β)/
√

2ct, where their dependence on the slope follows from equation (3.13), which now

reads as
d2H(β)

dβ2
+ H(β) +

c

H(β)
= 0 . (4.18)

This last equation turns out to be particularly advantageous for understanding the struc-

ture of the homothetic solutions in detail as it provides an intuitive account for their

classification depending on the sign of c. In the following, we study separately the self-

shrinking and self-expanding solutions by stripping off their t-dependence and draw some

characteristic figures that arise in each case.

(i) Self-shrinkers (c < 0): it is apparent from equation (4.18) that solutions with

constant mean curvature H(β) can only exist for c < 0. They represent circles with radius

R = 1/
√−c for which H =

√−c. In this case, equation (4.16) is trivially satisfied since

β = θ+π/2 at all points of a circle. When time dependence is reinstated, the circles evolve

by uniform contraction, as R(t) =
√

2ct, until they collapse to a point; this special solution

was studied in the context of boundary interactions in ref. [26], where it is referred to

as circular brane model. Other solutions include rosette-like curves, which are symmetric

about their maxima and minima, but they are not necessarily closed.

There is a special class of solutions, however, which are closed rosettes with winding

number p and q petals called Abresch-Langer curves Γp,q, [58, 59]. Such curves are graphs

of transcendental functions associated to any pair of relatively prime integers (p, q) so that

1

2
<

p

q
<

√
2

2
. (4.19)

The simplest one has characteristic integers (2, 3) and it is depicted in figure 5b next to the

homothetically contracting round circle, whereas the next more complicated curve (3, 5)

is depicted in figure 5c. Other examples correspond to the values (5, 8), (7, 10), (9, 14)

(12, 17) and so on.

The importance of these configurations stems from the fact that the mean curvature

flow tends to evolve closed curves towards the scaling solutions with c < 0 provided that

the maximum curvature remains bounded as |Hmax(t)|
√

2ct ≤ C < ∞ (type I singulari-

ties). Thus, embedded closed curves have the tendency to become circular as they shrink,
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Figure 5: Closed curves representing scaling solutions on the plane.

whereas closed curves with self-intersections tend towards one of the special locally convex

curves Γp,q. The corresponding scaling solutions may be alternatively viewed as describing

the asymptotic limit of the normalized mean curvature flow in the type I case. Further-

more, it can be shown under appropriate technical condition, that any closed n-dimensional

hypersurfaces in Rn+1 with non-negative mean curvature also evolves towards scaling solu-

tions, [48]. Such solutions obey Hn̂ = c~r in all dimensions, after extracting their factorized

t-dependence, as before, and they fall into three different classes: Sn, Sn−m × Rm or

Γp,q ×Rn−1 (see also ref. [18]). Thus, the classification of scaling solutions on the plane for

c < 0 has more general value for the whole subject.

We illuminate the presentation with a brief description of the transcendental nature

of the closed Abresch-Langer curves Γp,q, setting c = −1 without loss of generality. First,

note that equation (4.18) has a first integral

1

2

(

dH

dβ

)2

+ V (H) = E , (4.20)

with integration constant E and

V (H) =
1

2

(

H2 − logH2
)

. (4.21)

E can be viewed as the energy of a point particle that moves with respect to an effective

time β in a potential well V (H) having infinite height on both sides of the allowed range

0 ≤ H < ∞. Since the minimum of the effective potential is reached at H = 1, in which

case V (H) = 1/2, bounded motion with respect to β becomes possible for all E ≥ 1/2, as

in figure 6.

Periodic solutions H(β) with fixed E have primitive period

T (E) = 2

∫ H+(E)

H
−

(E)

dH
√

2(E − V (H))
, (4.22)

where H±(E) are the roots of the equation E = V (H) that correspond to the two turning

points of the bounded motion. The primitive period determines the minimum effective
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−

(E) H+(E)

1

2

E

V(H)

0

Figure 6: The effective potential for self-shrinkers.

time that takes H to return back to its original value. This, however, does not necessarily

mean that the curve itself has the same period in β for it may require several such turns,

say q, for x(β) and y(β) to return back to themselves. Also, in other cases, the resulting

curves may never close back to themselves, thus leading to rosette-type open shapes that

wind indefinitely on the plane.

Analysis of the problem shows that T (E) varies monotonically with E and it decreases

from
√

2π to π as the energy ranges in 1/2 < E < ∞. The upper bound of T (E) is

easily established by considering H = 1 + ǫ with small but non-vanishing ǫ. In this case

equation (4.20) takes the harmonic oscillator form

1

2

(

dǫ

dβ

)2

+ ǫ2 = E − 1

2
(4.23)

by expanding V (H) to quadratic order. Then, ǫ(β) is given by the trigonometric func-

tions
√

E − 1/2 sin(
√

2β) or
√

E − 1/2 cos(
√

2β) with E − 1/2 small but strictly positive

constant. These are periodic functions with period
√

2π that is insensitive to the value

of E provided that E stays close to 1/2. The lower bound of T (E) can be established by

asymptotic analysis that is rather involved and we refer the reader to the literature for the

details, [58, 59].

According to this result, closed curves on the plane with 1/2 < E < ∞ correspond to

trajectories with primitive period

T (E) = 2π
p

q
, (4.24)

where p and q are relatively prime integers subject to equation (4.19) above. This is a

transcendental quantization condition for the parameter E showing that the emergence of

closed rosettes on the plane is the exception rather than the rule. Other values of E result

to rosette-type curves with infinite number of self-intersection points that never close back

to themselves. Extending H(β) periodically to [0, 2πp] yields the Abresch-Langer curves

Γp,q with winding number p, as required, when the quantization condition (4.24) is fulfilled.
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Figure 7: Scaling solution on the plane representing the decay of a wedge.

These curves have 2q critical points for their mean curvature reaches the minimal value

H = 1 exactly twice within the primitive period T (E). They also appear to have q(p − 1)

self-intersection points in general. For other values of E the homothetic solutions are open

and can be formally thought to arise as limiting cases p → ∞ and q → ∞ with infinite

period.

Finally, note that H(β) follows from equation (4.20) by expressing β as indefinite

integral of dH/
√

2(E − V (H)), which obviously can not be written in terms of elementary

functions. The dependence of the position vector of such curves upon β, as given by

equation (3.12), turns out to be transcendental. It is also clear in this context that an

elementary solution arises when the effective point particle sits still at the minimum of

the potential V (H) having E = 1/2. It corresponds to a round circle of unit radius so

that its mean curvature is constant, H = 1, for all β, and describes the only simple closed

curve that shrinks by scaling in t. In that case the period of the curve is 2π and suffers

discontinuous jump from the lower bound of T (E) when E > 1/2.

(ii) Self-expanders (c > 0): this case allows only for hyperbola-like curves whose slope

increases monotonically as one varies clockwise the polar coordinate θ. These curves are

necessarily open with asymptotic lines placed symmetrically about the y-axis, as shown

in figure 7. The need for asymptotic lines follows by inspection of the integral equation

(4.17), for, otherwise, the area subtended by the radius vector of the corresponding curve, as

measured from the tip of the asymptotic wedge, will become unlimited in contradiction with

the finite change of their slope. The curves can be thought as representing an intermediate

stage for the decay of a wedge to straight line.

The details of the solution can be investigated from the point of view of equation (4.18),

setting c = 1 without loss of generality. As before, it has a first integral of the form (4.20),

with integration constant E, but with effective potential

V (H) =
1

2

(

H2 + logH2
)

(4.25)

that differs from the c < 0 case by a relative sign. As a result, V (H) is not bounded

from below, for it is a monotonically increasing function ranging from −∞ to ∞ when

0 ≤ H < ∞. E can take any arbitrary real value in this case, and, clearly, V (H) can not
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Figure 8: The effective potential for self-expanders.

support bounded motion with finite period; the corresponding scaling solution of the mean

curvature flow is an open curve. For any given E, H(β) follows, as before, by expressing

β as indefinite integral of dH/
√

2(E − V (H)), which in turn determines the form of the

solution implicitly via transcendental functions.

The mechanical analogue also helps to provide an intuitive explanation for the presence

of asymptotic lines and illustrate how scaling solutions can emerge from a wedge. H(β) is

the classical trajectory of a particle that rolls down the potential (4.25) having fixed energy

E with respect to the effective time β, as shown in figure 8.

The effective time that takes such a particle to go down the drain, when it starts with

zero velocity, is

∆β(E) =

∫ H0(E)

0

dH
√

2(E − V (H))
, (4.26)

where H0(E) is the (single) root of the equation E = V (H) that specifies its position

at some initial time β0. Thus, as one transverses the corresponding curve on the plane,

the slope changes by an overall finite amount ∆β(E) that depends on E. The curve tends

asymptotically to a straight line, with H = 0, which represents the universal attractor point

of the potential. Actually, this effective particle motion traces only half of the corresponding

curve on the plane, which can always be arranged to meet perpendicularly the y-axis by

choosing β0 = 0; the mean curvature of the curve at the starting point is H0(E), whereas

the slope of the right asymptotic line is ∆β(E) . The other half of the curve, together with

the left asymptotic line, are placed symmetrically about the y-axis and can be obtained by

simply reversing the direction of effective time. Then, tracing the complete curve from one

asymptotic limit to the other amounts to shooting a particle up from the bottom of the

potential and let it fall back to it after reaching a maximum height H0(E) that depends

on its energy. The two asymptotic lines meet at a point of the y-axis forming a wedge with

opening angle π − 2∆β(E); this angle varies monotonically from π to 0 as E ranges from

−∞ to ∞.

Particles with very low energy stay deep inside the throat of the potential, having

H ≃ 0 everywhere, and they correspond to straight lines; in this case the wedge is wide
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open to 1800 and the curve is lying horizontally on it. On the other hand, highly energetic

particles have H0(E) → ∞ and the two sides of the wedge tend to collapse against each

other. The same thing happens to the curve that folds up on the wedge, having infinite

curvature at the vertex and practically zero everywhere else. For intermediate energies the

typical scaling solution is a hyperbola-like curve with finite curvature everywhere. When

the t-dependence is reinstated into the solutions, the coordinates x and y scale in the same

way, as 1/
√

t, without affecting the angle of the asymptotic wedge y ∼ |x|. The curves

themselves appear as straight lines when one zooms closer and closer to them, whereas it

becomes increasingly difficult to distinguish them from the surrounding asymptotic wedge

when they are looked up from larger and larger distances away.

Therefore, in this context, the scaling solution can be thought as the mean curvature

analogue of the fundamental solution to the heat equation, whose initial configuration at

t = 0 is a delta function. It is known as Brakke’s wedge in mathematics, [16, 19], but it

also arose earlier in physics in ref. [14] and [54]. The initial curvature singularity is fully

dissipated after infinitely long time by flowing to the infra-red region. Clearly, it serves as

model for studying tachyon condensation for intersecting branes and can be further used in

connection with other works3 on the subject (see, for instance, [60] and references therein).

An analogous solution that describes the decay of a cone to the plane also exists for the

Ricci flow, [61] (but see also [53]); it serves as model for studying tachyon condensation in

closed string theory. Here, however, it is not possible to obtain the solution in closed form.

4.5 Paper-clip model

A genuine running solution of the mean curvature flow (3.7), with ξ = 0, corresponds to

the time dependent curve y = ϕ(x(t), t),

ev2tcosh(vy) = cos(vx) . (4.27)

with t running from −∞ to some finite value T that has been chosen to be zero for

convenience. The parameter v is free to take any arbitrary value. An equivalent form of

the curve is

y± =
1

v
log

(

cos(vx) ±
√

cos2(vx) − e2v2t

)

− vt (4.28)

with two branches that are simply related to each other by y → −y or equivalently by

v → −v. The variable x assumes values within the interval −π/2v to π/2v, but the precise

range depends non-linearly on time t.

The complete curve is closed since the two branches are glued symmetrically about

the y = 0 axis. For v = 0, the configuration reduces to a round circle that evolves by

scaling of its radius, i.e., x2 + y2 = −2t, as can be seen by expanding cos(vx) and cosh(vy)

up to second order in their arguments. As such, it is common to the circular homothetic

solution discussed earlier. For v 6= 0, however, the solution represents a convex curve in

R2 having oval (or paper-clip) shape at any given time t, as depicted in figure 9; hence the

name paper-clip model.

3We thank Vassilis Niarchos for a discussion on this subject.
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→ y

Figure 9: The paper-clip curve on the plane.

This solution arose independently in the physics and mathematics literature. It ap-

peared as model for boundary interactions in ref. [27, 28], but it was also investigated much

earlier in connection to magneto-hydrodynamics, [54]. It has the special property that its

extrinsic curvature H, when viewed as function of the slope β and the time t, satisfies the

special ansatz

H2(β, t) = a(β) + b(t) . (4.29)

Substituting into equation (3.13) one finds the following system,

(

da

dβ

)2

+ 4a2 = 4c2 ,
db

dt
− 2b2 = −2c2 , (4.30)

where c is a constant. The relevant solution in this class has

a(β) =
v2

2
cos(2β) , b(t) =

v2

2
coth(−v2t) (4.31)

for c = v2/2 and gives rise to the following dependence of the position vector upon β,

x(β) =
1

v
arcsin

(
√

1 − e2v2t sinβ
)

, y(β) = −1

v
arcsinh

(
√

e−2v2t − 1 cosβ
)

, (4.32)

up to translations, according to equation (3.12). Then, it is straightforward to verify that

this coincides with the paper-clip curve (4.27) after eliminating the dependence on β.

The corresponding arc-length, as measured from the tip of the paper-clip, follows by

integrating dl = dβ/H and equals to the incomplete elliptic integral of the first kind

l(β) =
k

v

∫ β

0

dβ′

√

1 − k2sin2β′
=

k

v
F (β; k) (4.33)

in terms of the slope β, with modulus k =
√

1 − e2v2t; k varies from 1 to 0 as t runs from

−∞ to 0. Thus, in general, we have the relation

sinβ = sn(vl/k; k) (4.34)

in terms of the corresponding sine-amplitude Jacobi elliptic function.

Clearly, when v → 0 one obtains the characteristic limit H2 = −1/2t of a circular

curve for all t. Also, when v 6= 0, the ultra-violet limit t → −∞ of the paper-clip becomes

asymptotic to the curve

y =
1

v
log (2cos(vx)) − vt , (4.35)
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Figure 10: Schematic gluing of hair-pins to form a paper-clip.

as viewed from the tip of the configuration associated to the y+ branch. This is the hair-

pin solution up to an irrelevant constant shift in t. In the ultra-violet region, the mean

curvature of the paper-clip tends to the limit H2 = v2cos2β with β ≃ vx up to exponentially

small corrections in time. A hair-pin facing in the opposite direction is also obtained in the

ultra-violet region by viewing the curve from the other tip associated to the y− branch.

More generally, as t runs from −∞ to 0, the paper-clip evolves by shrinking until it

fully collapses to the point x = 0 = y at t = 0 and becomes extinct. Note that its size in

the x-direction varies as 2v−1arccos(exp(v2t)), and deminishes from π/v at t = −∞ to zero

at t = 0. Likewise, its size in the y-direction varies as 2v−1arccosh(exp(−v2t)), which also

diminishes from infinite to zero length. Thus, as time goes on, the configuration becomes

rounder and rounder by shrinking until it crunches to a point. Only when v = 0 the two

characteristic lengths of the configuration are equal and diminish evenly by preserving the

circular shape of the corresponding solution. According to this, the paper-clip provides the

mean curvature analogue of the sausage model encountered in the Ricci flow on S2, [41].

When the configuration is viewed from its “center of mass”, and not from its tips, it

looks as a “two-body” problem: two hair-pins with opposite orientation are glued together

in their asymptotic region, y = 0, and move against each other until their tips merge. Their

bound state is pictured schematically in figure 10 by putting together two periodic arrays

of hair-pin and anti-hair-pin curves. The paper-clip is depicted by solid lines, whereas the

dotted lines denote periodic repetition of the same configuration.

Note that a similar interpretation holds for the sausage model as a “two-body” problem

for Ricci solitons that merge together, [41, 53]. The metric of the sausage model can also

be expressed in terms of the sine-amplitude Jacobi elliptic function, when written in proper

coordinates, which is analogous to the elliptic dependence of the arc-length induced on the

paper-clip curve.
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Figure 11: Schematic gluing of hair-pins to form an oxlip.

4.6 Oxlip model

An open variant of the paper-clip model is obtained by considering the following curve on

the plane,

ev2tsinh(vy) = cos(vx) , (4.36)

for v 6= 0. In this case, x ranges from −π/v to π/v, irrespective of t, and y can be either

positive or negative. An equivalent description is given by the graph of the function

y =
1

v
log

(

cos(vx) +

√

cos2(vx) + e2v2t

)

− vt . (4.37)

For −π/2v ≤ x ≤ π/2v the variable y is positive, assuming that v > 0, whereas for

−π/v ≤ x ≤ −π/2v and π/2v ≤ x ≤ π/v the y coordinate is negative. The points

(x = ±π/2v, y = 0) are inert under the flow, since these are the points of inflection where

the extrinsic curvature vanishes.

This particular solution appears to be new and it is quite interesting in many respects.

When compared to the usual paper-clip model, the curve is formed by gluing together two

periodic arrays of hair-pins facing in the opposite direction but with a relative shift in x

equal to π/v, as in figure 11. Thus, it is a again a bound state problem of hair-pin and

anti-hair-pin curves but of slightly different kind. The oxlip curve is depicted by the solid

line, extending from −π/v to π/v, whereas the dotted lines denote periodic repetition of

the same configuration.

The remarkable feature of this solution is that the mean curvature flow exists for all

time, as t ranges from −∞ to ∞. In the ultra-violet limit, t → −∞, one readily gets an

infinitely long hair-pin configuration as seen from its tip situated infinitely far away from

the gluing region y = 0. On the other hand, in the infra-red limit t → ∞, the configuration

tends towards the special curve y = 0 with −π/v ≤ x ≤ π/v, which is a segment of a

straight line. Thus, it appears that the hair-pin on the right is decaying while its two
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Figure 12: Transition of a hair-pin to a line segment.

sides are getting squeezed against each other. Throughout the process, the two ends of the

hair-pin stay firm at (x = ±π/2v, y = 0). The two half hair-pins on the left undergo similar

decay until a line segment is finally formed in the infra-red limit. Three consecutive steps

of the flow are depicted in figure 12. The same picture arises for v < 0, but with opposite

orientation for the constituent hair-pins.

This solution satisfies the special ansatz H2(β, t) = a(β)+ b(t) for the mean curvature

with

a(β) =
v2

2
cos(2β) , b(t) =

v2

2
tanh(−v2t) . (4.38)

It is similar to the form of the paper-clip model, but b(t) is now given by the hyperbolic

tangent rather than cotangent function; as a result, b(t) never blows up and the solution

exists for all time. Then, x(β) and y(β) can be calculated as for the paper-clip curve, and

the same applies to the arc-length l(β) which is also expressed in terms of the incomplete

elliptic integral of the first kind. The only difference is the choice of modulus, which here

is k̃ =
√

1 + e2v2t, and varies from 1 to ∞ as t ranges from −∞ to ∞. It relates to the

modulus k of the paper-clip curve by the transformation k̃ =
√

2 − k2 in the common time

interval (−∞, 0]. Standard identities among Jacobi elliptic functions show that the slope of

the decaying hair-pin at different points of the curve is expressed in terms of its arc-length

at any given instance of time by

sinβ =
1

k̃
sn(vl;

1

k̃
) (4.39)

with 0 ≤ 1/k̃ ≤ 1. Clearly, the slope β vanishes everywhere in the infra-red limit where

1/k̃ = 0.

Next, we will find, among other things, that the mean curvature flows for the paper-

clip and oxlip models are naturally related to certain instability modes of the hair-pin

configuration as one begins to move away from the ultra-violet region.

5. Modes of instability and transitions on the plane

In this section we perform a general analysis regarding the linearized (in)stability of special

solutions that move by translations, rotations or scaling on the plane. In all cases, we work

with the parabolic equation for the mean curvature and obtain an eigen-value problem of

the form

Lh(β) = λh(β) (5.1)
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governing small fluctuations about a given solution,

H(β, t) = H0(β) + h(β)exp(λt) . (5.2)

H0(β) denotes the mean curvature of the unperturbed curve in a reference frame that

all time dependence has been accounted by the appropriate choice of vector field ξµ. The

operator L is linear of second order, thus leading to an effective quantum mechanics problem

in one dimension parametrized by the slope β. The form of the corresponding potential

depends on H0(β) and will be determined in all three cases. General conclusions about its

spectrum will be drawn in each case separately.

In general, eigen-states with positive λ account for instabilities since the perturbations

grow larger as time goes on. On the other hand, perturbations with negative λ tend to

dissipate exponentially fast and the configuration settles quickly back to its initial form,

thus leading to stability. Usually, we refer to them as relevant and irrelevant deformations,

respectively. Finally, if zero modes are present, they will only act on the parameter space

of the given solution without affecting its time dependence. Our primary aim here is

to identify potential instabilities about some given reference curves, which arise as fixed

points of the mean curvature flow modulo translations, rotations or dilations, and associate

transitions towards more stable configurations.

5.1 Translating solution

In this case, small fluctuations of the hair-pin take the form

H(β, t) = vcosβ + h(β)eλt , (5.3)

measuring its response against possible squeezing modes. Then, in the linearized approxi-

mation, equation (3.14) for the mean curvature becomes

v2cos2β

(

d2h

dβ2
+ h

)

= λh (5.4)

since ~ξ · n̂ = vcosβ and (d2/dβ2 + 1)(~ξ · n̂) = 0. It turns out that the spectrum of λ can be

fully determined by simple transformation to an exactly solvable problem.

For this, consider the change of variables

z = log

(

tan

(

β

2
+

π

4

))

, Ψ(z) = h(β)
√

coshz (5.5)

that transform the fluctuation equation (5.4) into the following Schrödinger problem

−d2Ψ

dz2
+

1

4

(

1 − 3

cosh2z

)

Ψ = − λ

v2
Ψ (5.6)

with −∞ < z < ∞ as −π/2 ≤ β ≤ π/2. The variable z is obtained by integrating

dz = dβ/cosβ = vdβ/H(β) for the hair-pin curve and as such it coincides with its arc-

length l (multiplied by v) as measured from the tip; a useful relation here is coshz = 1/cosβ.
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Thus, we arrive at an eigen-value problem for a particle moving on the real line under the

influence of a symmetric Rosen-Morse potential U(z) = W 2(z)−W ′(z) with superpotential

W (z) =
1

2
tanhz (5.7)

and energy E = −λ/v2.

This problem has been exactly solved in the literature, [62], in the context of super-

symmetric quantum mechanics, and it was found that it admits only one normalizable

eigen-state,

Ψ0(z) =
1√

coshz
, (5.8)

whose energy is zero. The ground state, which corresponds to h0(β) = cosβ under the

change of variables (5.5), does not induce a decay of the initial configuration but only

amounts to shifting v by constant, as can be readily seen from equation (5.3); it is the

expected behavior for a zero mode acting on the moduli v of the underlying hair-pin curve.

There is also a continuum of scattering eigen-states with energies E ≥ 1/4, which, however,

have λ < 0 and correspond to stability modes of the problem as one flows away from the

ultra-violet regime. According to this, the hair-pin (4.3) looks absolutely stable and acts

as infra-red attractor for all hair-pin-like shapes that deviate from it by the appropriate

perturbations. It is the expected behavior for a solitonic solution.

There is an additional infinite set of discrete eigen-states in the Rosen-Morse potential

with E < 0, and hence λ > 0, which may serve as instability modes of the hair-pin

configuration. The existence of negative energy states in a problem of supersymmetric

quantum mechanics looks strange at first sight, but it only implies that the corresponding

Hamiltonian operator is not self-adjoint in the space of the corresponding wave functions,

thus violating the lower energy bound. The reason is that such states are not normalizable,

since they blow up at the two ends of the hair-pin as z → ±∞, and should be disregarded

on normal grounds. This is indeed the case for the stability analysis of a single hair-pin,

but as it turns out negative energy states play an interesting role in understanding the

linearized evolution of bound state problems of hair-pins, such as the paper-clip in section

4.5 and its open variant in section 4.6. It will be seen later that gluing two hair-pins

with the opposite orientation amounts to canceling the divergent perturbations in their

asymptotic region, thus giving rise to regular solutions.

More precisely, it can be easily verified that that the Schrödinger problem (5.6) has

eigen-states

Ψn(z) = in+1
√

coshz P 1
n(isinhz) (5.9)

with quantized energies En = −n(n + 1) for all n = 1, 2, 3, · · ·. Here, P 1
n(x) denote, up to

normalization, the associated Legendre functions of x

P 1
n(x) =

√

1 − x2
dn+1

dxn+1
[(1 − x2)n] . (5.10)

Despite appearances, all states Ψn(z) are real. Then, λ assumes discrete values λn =

v2n(n + 1), which are non-negative, and the corresponding modes are associated to in-

stabilities of the hair-pin configuration. The ground state of the Rosen-Morse potential,
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Ψ0(z) = 1/
√

coshz, may also be appended to these formulae by extending their validity to

n = 0.

The first non-normalizable state in this series has n = 1 with λ1 = 2v2 and Ψ1(z) =

(coshz)3/2, which corresponds to h1(β) = 1/cosβ, up to normalization. A simple calculation

shows that this is precisely the perturbation driving the evolution of the paper-clip at the

linearized level, as seen from one of its tips close to the ultra-violet region. Indeed, by

expanding the mean curvature H(β, t) of the paper-clip model one finds

H(β, t) =
v√
2

√

cos(2β) − coth(v2t) = vcosβ +
v

2cosβ
e2v2t + O(e4v2t) . (5.11)

This is a valid expansion as long as t → −∞ and β parametrizes small deviations away

from the tip of one of the two constituent hair-pins so that 1/cosβ remains bounded. It

has precisely the form

H(β, t) ≃ H0(β) + h1(β)exp(λ1t) , (5.12)

as noted above. Similar conclusions are drawn by expanding around the other tip of the

curve. Likewise, for the oxlip model one finds

H(β, t) =
v√
2

√

cos(2β) − tanh(v2t) = vcosβ − v

2cosβ
e2v2t + O(e4v2t) (5.13)

which is valid in the same domain of parameters and corresponds to the same linearized

perturbation (5.12).

This identification puts the negative energy states on firm basis and makes them phys-

ically relevant for the bound state problems under consideration. Of course, it is important

to realize that the gluing conditions, which stick together the open ends of the constituent

hair-pins, miraculously cancel the divergences of h1(β) on each component when β → ±π/2.

The free ends of a hair-pin and an anti-hair-pin effectively attract each other, but this is

a non-linear effect that can not be seen by expanding far away from their overlap. Only

the exact solution, in either case, reveals the correct value of the extrinsic curvature at

the connection points. Higher excited states n ≥ 2 may also be used to describe potential

decay channels for bound state problems of the hair-pin curves, since λn is strictly positive,

but their form is more complicated; for instance, for n = 2, Ψ2(z) = (coshz)3/2sinhz, which

corresponds to h2(β) = sinβ/cos2β with λ2 = 6v2 and so on. To the best of our knowledge,

there is no exact description of the corresponding trajectories at the non-linear level, as

in the case of the paper-clip and oxlip models. It is an interesting problem that deserves

further investigation while searching for exact solutions of the mean curvature flow.

Finally, we note for completeness that all positive energy states in the Rosen-Morse

potential (5.6) can be obtained from the discrete set of negative modes (5.9) by appropri-

ate continuation. More precisely, using the standard description of the associated Legendre

functions in terms of hypergeometric functions, and replacing n by ik − 1/2 in their argu-

ments, so that E = −n(n + 1) becomes E = k2 + 1/4, we obtain solutions with continuous

spectrum E ≥ 1/4 for all real values of k. If time were flowing in the opposite direction

these would have been the instability modes of the problem.
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5.2 Scaling solutions

Next, we investigate the existence of instability modes for perturbations of the scaling

solutions. Naturally, there are two different cases here depending on the sign of the scaling

parameter c. In either case it is appropriate to look at the linearized problem in terms of

equation (3.14) for H(β, t) = H0(β)+ h(β)exp(λt) with ~ξ · n̂ = −c(x(β)sinβ − y(β)cosβ) =

−cS(β), in which case (d2/dβ2 + 1)(~ξ · n̂) = −c(S′′(β) + S(β)) = −c/H(β).

(i) Self-shrinkers (c < 0): for self-shrinking solutions the small fluctuation operator L
reads

Lc<0 = H2
0 (β)

d2

dβ2
+ H2

0 (β) + 1 (5.14)

setting c = −1 without loss of generality. Focusing on closed curves, as we do in the

sequel, amounts to solving the eigen-value problem Lh(β) = λh(β) on the space of periodic

functions h(β + T ) = h(β) with period T = 2πp given in terms of the winding number

p; note, however, that the periodicity on h(β) is necessary but not sufficient condition to

ensure closure of the resulting curve via equation (3.12) for x(β) and y(β), and it should

be checked separately. Since the operator (5.14) is self-adjoint on the space of square-

integrable functions L2(S1, dµ) with measure dµ = dβ/H2
0 (β), it follows from the general

theory, [63], that its spectrum is discrete

λ0 > λ1 ≥ λ2 > λ3 ≥ λ4 > · · · (5.15)

accumulating at −∞. The corresponding eigen-functions hn(β) are orthonormal and al-

though they can not be explicitly computed, due to the transcendental form of H0(β), they

are bound to have a fixed number of nodes depending on n; in particular, h0 has no nodes,

whereas h2n−1 and h2n with n > 1 have exactly 2n zeros in S1 within a period 2πp.

One easily sees in the present case that H0(β) is an eigen-function of the operator

(5.14) with eigen-value 2, which is necessarily the largest, i.e., λ0 = 2, since h0(β) =

H0(β) ≥ 1 vanishes nowhere. Thus, there is at least one potential mode of instability

modulo the question of keeping the deformed curve closed. There are additional modes of

instability for the linearized perturbations of the Abresch-Langer curves Γp,q with winding

number p and q petals, which depend on q > 1. For this note that H ′
0(β) is also an

eigen-function of the operator (5.14) but with zero eigen-value. Since it has 2q zeros,

equal to the number of times H0(β) reaches its minimum value 1 within a period 2πp,

it follows from above that H ′
0(β) should be identified with either eigen-function h2q−1 or

h2q. Actually, it turns out that h2q−1(β) = H ′
0(β) and zero is a simple eigen-value. The

effect of the zero mode on the Abresch-Langer curves is to rotate them on the plane since

H0(β + ǫ) = H0(β) + ǫH ′
0(β) to lowest order in ǫ. Thus, in general, there are 2q − 1

discrete modes of instability h0, h1, · · · , h2q−2 for all Γp,q curves; among these there are two

eigen-functions, cosβ and sinβ, which both have λ = 1. All other modes have negative

eigen-values leading to exponentially damped perturbations in time. It turns out that the

total number of instability modes that also preserve the closure of the curves is 2q − 3;

further details can be found in ref. [59].
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There is a more systematic way to examine the spectrum of small fluctuations using

the arc-length l = z, for dz = dβ/H(β), and the variable Ψ(z) = h(β)/
√

H0(β), as for the

translating solution. The effective quantum mechanics problem now reads
(

− d2

dz2
+ U(z)

)

Ψ(z) = (2 − λ)Ψ(z) , (5.16)

where U(z) = W 2(z) + W ′(z) with corresponding super-potential

W (z) =
1

2H0(z)

dH0(z)

dz
=

dH0(β)

2dβ
. (5.17)

The variable z ranges over a finite distance, equal to the total length of the Γp,q curves,

along which H0 remains positive ranging from H−(E) to H+(E). Thus, z can be regarded

as periodic variable. Also, W (z) never becomes singular in this domain; it is equal to

(one-half) the velocity of a particle moving in the potential well (4.21). Thus, according

to supersymmetric quantum mechanics, the energy spectrum is strictly positive, so that

λ ≤ 2, supporting an infinite but discrete set of periodic solutions as discussed above.

Of course, one may also have bands with continuum spectrum when more general Bloch-

wave solutions are allowed to occur; these generalizations, however, do not yield periodic

perturbations of the Abresch-Langer curves breaking their closure.

The special case q = 1 is a round circle with H0(β) = 1 everywhere and its perturba-

tions can be studied separately by solving the eigen-value problem (d2/dβ2+2)h(β) = λh(β)

on S1 with period 2πp. The periodic solutions are simply cos(nβ/p) and sin(nβ/p) with

integer n. In either case, the eigen-values are λ = 2 − (n/p)2, which are positive only

for those n satisfying the inequality n2 < 2p2. Clearly, there can be no zero mode for

1/
√

2 is an irrational number; the absence of zero modes is also consistent with the fact

that the position of the circle on the plane does not change by rotation, unlike the case

of Abresch-Langer curves. For winding number p = 1, there are no unstable modes that

preserve the closure of the curve. Indeed, although cosβ and sinβ have λ = 1 and can be

potential modes of instability, they are ruled out because they do not yield periodic x(β)

and y(β), respectively (see the remark towards the end of section 2.1). Thus, there is a

unique simple homothetic closed curve on the plane which is absolutely stable against all

perturbations; this is also consistent with the fact that a circle with winding number p = 1

always attracts locally convex simple closed curves under the flow, [46, 47]. For circles

with higher winding number p > 1, it follows from above that the number of potentially

unstable modes equals to the number of integers n, positive or negative, that satisfy the

inequality |p/n| > 1/
√

2. All these modes preserve the closure of the curve apart from two,

cosβ and sinβ, which have λ = 1 for all p.

Thus, as time goes on, one can envisage transitions from a circular configuration with

winding number p towards an Abresch-Langer curve Γp,q with 1/2 < p/q < 1/
√

2 followed

by a transition towards a singular closed curved with q cusps, where the mean curvature

blows up. The various stages of deformation are shown schematically in figure 13 for the

simplest case (p, q) = (2, 3), as in ref. [58].

In this case, turning on an instability mode, say h(β) = sin(β/2), for a circle with

p = 2, which is pictured as two p = 1 copies sitting on top of each other, amounts to
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(a) (b) (c)

(d) (e) (f)

Figure 13: Transition from a double-folded circle to a singular curve.

enlarging the mean curvature of the first copy (covered by 0 ≤ β ≤ 2π) and decrease

that of the second copy (covered 2π ≤ β ≤ 4π). It is easy to imagine that such uneven

deformation, which keeps the curvature unchanged at the points β = 0, 2π and 4π is

pictured schematically by the closed curve figure 13b. Subsequent evolution towards the

Abresch-Langer curve Γ2,3, as shown in figure 13c, is then due to non-linear effects. The

instability modes of Γ2,3 are capable to deform it further towards the configurations shown

in figure 13d and figure 13e until the singular curve shown in figure 13f is reached. None

of the intermediate configurations correspond to scaling solutions apart from (a) and (c).

Unfortunately, such transitions are not available in closed form; it is also an interesting

problem for future work.

The stability modes of the Abresch-Langer curves can be formally viewed as instability

modes of the backward mean curvature flow. Thus, one may also envisage transitions from

Γp,q to a circle with winding number p, as given schematically in the figure above by flowing

continuously from figure 13c to figure 13b and finally to figure 13a. In this case, the periodic

functions cos(qβ/p) and sin(qβ/p) with p/q < 1/
√

2 are stability modes of the circle with

winding number p showing that the configuration figure 13a can act as attractor for the

corresponding flow. It also explains from a more intuitive point of view the upper bound

on p/q that defines the initial scaling solution Γp,q provide that such transitions (among

others) are indeed possible. In this respect, it can be shown that the mean curvature flow

with initial data ~r0 = ~rp,q + ǫn̂, given in terms of the position vector of any Abresch-Langer

curve Γp,q with |ǫ| small, tends asymptotically to an p-fold circle when ǫ > 0 and to a
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(a) (b)

Figure 14: Cutting rules familiar from knot theory.

singular closed curve with q cusps when ǫ < 0, [64].

There are additional transitions one may envisage. One possibility is to have a decay

channel for the singular curve figure 13f, which can be roughly thought as bound state of

three wedges held together by appropriate gluing conditions, to a diminishing simple circle.

Although there is no explicit solution of this kind, one may imagine that each corner will

decay to a smooth curve coming out of the wedge and all three local solutions can be

patched together to form a smooth closed curve that will eventually shrink to a point.

Combining this transition with the one depicted in figure 13, we arrive at the reasonable

conclusion that a configuration can change its winding number, e.g., from p = 2 to p = 1,

when it passes through a singular shape. Another possibility based on the physical idea

of tachyon condensation is that any curve with self-intersections, like the Abresch-Langer

curves, will cut itself and follow the decay channel of two intersecting lines in the vicinity

of each self-intersection point4. Recombination of the outgoing curves from each local

wedge will result into a collection of circular branes that eventually shrink to points. This

procedure resembles the construction of knot invariants out of planar closed curves, using

appropriate cutting rules at the self-intersection points; see, for instance, [65] and references

therein. These are depicted in figure 14 below.

It may very well be that such formal connection holds the key for the systematic

construction of the corresponding boundary states in quantum field theory. We plan to

return to this problem elsewhere.

(ii) Self-expanders (c > 0): finally, we consider the case of self-expanding solutions for

which the small fluctuation operator L reads

Lc>0 = H2
0 (β)

d2

dβ2
+ H2

0 (β) − 1 , (5.18)

4We thank Boris Pioline for a discussion on this point.
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setting c = 1 for convenience. Note that the spectrum of Lc>0 follows by subtracting two

units from the spectrum of Lc<0, although the form of the eigen-functions h(β) is different

for H0(β) is not the same. Also, in this case, the reference curves are open and one should

impose a different set of boundary conditions on the corresponding eigen-functions. Here,

H0(β) is an eigen-function with λ = −2, whereas H ′
0(β) is still an eigen-function with λ = 0.

This zero mode, as before, describes the freedom to rotate the curve on the plane and orient

it differently with respect to the y-axis; the same rotation applies to its asymptotic lines.

There are also two obvious modes with λ = −1 corresponding to the eigen-functions cosβ

and sinβ.

In general we would like to solve the eigen-value problem (5.18) with a prescribed set

of boundary conditions. Here, β ranges in the interval [π − ∆β(E), ∆β(E)] whose end

points are given in terms of the slope (4.26) of the asymptotic lines to the scaling solution.

If the perturbed curve is to remain asymptotic to the wedge, one has to consider solutions

h(β) that vanish at the end points of this interval. This is a well-defined bound state

problem having discrete spectrum λ ≤ −2 that accumalates to −∞. The proof relies on

the observation that H0(β), which is an eigen-state of the operator (5.18) with the above

boundary conditions, vanishes nowhere else but at the end points of the interval; as such,

it serves as the ground state of the problem. All higher excited states will have λ < −2

and exhibit additional zeros at various intermediate points of the interval. The conclusion

is that all perturbations of this kind correspond to stability modes.

Instability modes may only arise if one alters the boundary conditions. Note that

perturbations which can grow infinite large at the end points of the interval, while they

remain bounded in all intermediate points, are capable to produce solutions with λ > −2.

For example, the zero mode H ′
0(β) is a monotonically decreasing function starting from

∞ at β = π − ∆β(E) and ending to −∞ at β = ∆β(E); it has only one zero at β = 0

around which the perturbation stays small. It is easy to anticipate the existence of excited

eigen-states with the same blow up behavior at the end points of the interval that exhibit

more zeros at intermediate points. Although it is not possible to construct them explicitly,

they are bound to have λ > 0 and lead to instabilities of the scaling solution. These

positive modes are similar in nature to the instability modes of the hair-pin configuration

that also blow up at the end points of the β-interval. It will be interesting to examine them

further and associate various decay channels towards some more stable configurations in

“bound state” problems with curvature singularities, e.g., configurations of closed curves

with cusps.

A more systematic description is also provided here by supersymmetric quantum me-

chanics using the arc-length l = z that ranges from −∞ to ∞ as one traces the curve from

its far left to its far right asymptotic lines. Letting Ψ(z) = h(β)/
√

H0(β), as before, the

corresponding linearized equation becomes

(

− d2

dz2
+ U(z)

)

Ψ(z) = −(2 + λ)Ψ(z) , (5.19)

where U(z) = W 2(z)+W ′(z) with super-potential given by the same functional form (5.17).

This super-potential equals to (one-half) the velocity of a particle in the unbounded poten-
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tial well (4.25) and can take any real value. Under usual boundary conditions at z → ±∞
the spectrum is non-negative leading to λ ≤ −2 by supersymmetry.

5.3 Rotating solution

Next, we consider small fluctuations around the static Yin-Yang curve with curvature

H0(β), satisfying the defining relation (4.10), and substitute into equation (3.14). Note

that in this case ~ξ · n̂ = ω(x(β)cosβ + y(β)sinβ) = ωS′(β) and so simple calculation yields

(d2/dβ2 + 1)(~ξ · n̂) = ω(S′′(β) + S(β))′ = −ωH ′(β)/H2(β). Then, the corresponding

linearized problem reads Lh(β) = λh(β) with

L = H2
0 (β)

d2

dβ2
+ ω

d

dβ
+ H2

0 (β) − 2ω
H ′

0(β)

H0(β)
. (5.20)

Clearly, H ′
0(β) is a zero mode that corresponds to the freedom to perform rigid rotation of

the Yin-Yang curve on the plane.

In order to examine the spectrum of the operator L it is convenient, once again, to

introduce the arc-length parameter l = z and change variable to

h(β) = Ψ(z)
√

H0(z)exp

(

−ω

2

∫ z

0

dz′

H0(z′)

)

. (5.21)

This results into an effective Schrödinger problem for a particle in the state Ψ(z) with

energy E = −λ moving in the following potential

U(z) = W 2(z) − W ′(z) − H2(z) , (5.22)

where

W (z) =
1

2

(

1

H(z)

dH(z)

dz
+

ω

H(z)

)

=
1

2

(

dH(β)

dβ
+

ω

H(β)

)

. (5.23)

The effective coordinate z ranges from −∞ to ∞, as one traces the complete Yin-Yang

curve from one end to the other, with z = 0 corresponding to the point of inflection located

at its center. The curvature remains bounded everywhere and tends to zero far away from

the center of the spiral.

If the term H2(z) were not present, the potential U(z) would support a zero energy

state as well as higher energy states by supersymmetric quantum mechanics. Note, how-

ever, that H2(z) is a positive definite term that vanishes asymptotically as z → ±∞ and

lowers the potential everywhere. Thus, the energy spectrum of U(z) is also lower having

at least one negative energy state that arises by shifting the energy of the “would be su-

persymmetric” ground state. It also supports a zero energy state, as noted above, which

arises by shifting the energy of some otherwise excited supersymmetric state; furthermore,

it supports other positive energy states. Although it is difficult to determine the exact form

of the shifted energy eigen-states, it is clear that the presence of negative modes, which

have λ > 0, will lead to instabilities of the Yin-Yang curve.
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6. Mean curvature flow on two-dimensional surfaces

In this section we extend the previous discussion to two-dimensional curved spaces, so

that the mean curvature flow is naturally combined with the Ricci flow. We will present

examples of curves embedded in conformal backgrounds, such as the Ricci soliton, as well

as examples of deforming curves embedded in spaces with deforming metrics. Among

them there are mini-superspace models that capture the competition of shrinking curves

on shrinking backgrounds. Closed curves may fully collapse before the metric reaches a

singularity or they may collapse simultaneously to a point.

6.1 General aspects

Let us consider a general two-dimensional ambient space M whose metric is expressed in

conformally flat form

ds2
M =

1

Ω

(

dx2 + dy2
)

. (6.1)

The conformal factor Ω depends on the coordinates x and y and it may also depend on the

renormalization group time t when the background deforms under the Ricci flow. In this

space we consider embedded curves (x(s), y(s)) whose induced line element is

dl2 =
1

Ω

(

(

∂x

∂s

)2

+

(

∂y

∂s

)2
)

ds2 . (6.2)

According to the definitions given in appendix A, the unit normal vector to each point of

these curves is

n̂ =

√
Ω

√

1 + ϕ′2(x)
(−ϕ′(x), 1) , (6.3)

and the mean curvature is

H =

√
Ω ϕ′′(x)

(

√

1 + ϕ′2(x)

)3 +
1

2
√

Ω
√

1 + ϕ′2(x)

(

∂yΩ − ϕ′(x)∂xΩ
)

, (6.4)

which generalize the corresponding expressions for planar curves used in section 3. The

notation y = ϕ(x) is used here, as before, to express the embedded curves in graph form.

The mean curvature flow in M is formulated, as usual, by computing the deformations

of the coordinate functions x(s, t) and y(s, t) driven by the mean curvature vector. The

result is better described by the deformation of graphs y = ϕ(x(t), t), which turn out to

satisfy equation

∂ϕ

∂t
=

Ω ϕ′′(x)

1 + ϕ′2(x)
+

1

2

(

∂yΩ − ϕ′(x)∂xΩ
)

− ky + ϕ′(x)kx . (6.5)

Here, we have properly included the effect of reparametrizations generated by a Killing

vector field k (if it is at all present) along the flow. This equation should be combined with

the Ricci flow of the target space metric, which reads in terms of Ω

∂Ω−1

∂t
=

1

2
(∂2

x + ∂2
y)log(Ω−1) (6.6)
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when there is no dilaton present in the model. Thus, the combined system of Ricci and

mean curvature flows for embedded curves in arbitrary two-dimensional Riemannian spaces

are described by equations (6.5) and (6.6) for the two unknown functions Ω and ϕ, which

in general depend on t.

In the presence of a dilaton field Φ, the conformal factor should satisfy the following

constraints

∂x(Ω∂yΦ) + ∂y(Ω∂xΦ) = 0 , ∂x(Ω∂xΦ) = ∂y(Ω∂yΦ) , (6.7)

for, otherwise, the different components of the Ricci flow equations for the metric are not

compatible. In view of the applications that will be considered later, let us assume that

both Φ and Ω are independent of the coordinate x so that the model exhibits an isometry

with Killing vector field ∂/∂x. Then, the constraints above are automatically satisfied

provided that Ω∂yΦ is independent of y. This term is actually constant, and not function

of t, for otherwise the y-derivative of the dilaton flow will be incompatible with the Ricci

flow. This constant is of order 1/α′ and may be chosen so that

Ω∂yΦ =
4

α′
(6.8)

when the dilaton field is non-trivial; otherwise it is zero. The normalization ensures that

fixed points of the Ricci flow are also fixed points of the dilaton flow accounting for the

balance between the field dependent and central terms of β(Φ) in two dimensions. Thus,

the two fields Φ and Ω are taken to satisfy equation (6.8) for all t, and, from now on, we

set for convenience α′ = 4.

According to this, the Ricci flow for Ω(y, t) is given by the evolution

∂

∂t
Ω−1 =

1

2
∂2

y log(Ω−1) − ∂y(Ω
−1) , (6.9)

whereas the dilaton Φ(y, t) follows by integration of equation (6.8). Also, the equation for

the mean curvature flow, expressed in terms of the graph ϕ(x(t), t) for embedded curves,

takes the following form

∂ϕ

∂t
=

Ω ϕ′′(x)

1 + ϕ′2(x)
+

1

2
∂yΩ + 1 + kxϕ′(x) − ky (6.10)

accounting also for the dilaton and the effect of reparametrizations generated by the Killing

vector field (kx, ky) along the flow.

It is convenient sometimes, when the ambient space is surface of revolution, to use

proper coordinates (r, θ) so that the metric takes the form

ds2
M = A2(t)

(

dr2 + f2(r, t)dθ2
)

(6.11)

with scale factor A(t) and profile function f(r, t). These coordinates are best suited for

drawing the surface and the curves embedded in it. The corresponding Killing vector field

is (kr, kθ) = (0, ω) and it is associated to arbitrary angular velocity ω. Assuming that the

dilaton is independent of θ, the Ricci flow equations become

∂A2

∂t
=

f ′′

f
− 2Φ′′ ,

∂f

∂t
=

1

A2
(fΦ′′ − f ′Φ′) , (6.12)
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where prime denotes the derivative with respect to the radial coordinate. The dilaton flow

accompanying them is

∂Φ

∂t
=

1

2A2

(

Φ′′ +
f ′

f
Φ′ − 2Φ′2

)

+ 1 , (6.13)

setting, once again, α′ = 4. Also, the mean curvature flow for deforming curves can be

formulated in this frame by considering r = ρ(θ(t), t). Explicit calculation shows that it

takes the following form

∂ρ

∂t
=

1

A2 (f2(ρ) + (∂ρ/∂θ)2)

(

∂2ρ

∂θ2
− f ′(ρ)

f(ρ)

(

f2(ρ) + 2

(

∂ρ

∂θ

)2
))

+
1

A2
Φ′(ρ) + ω

∂ρ

∂θ
,

(6.14)

adding also the contribution of the dilaton and the effect of possible reparametrizations

generated by uniform rotation along the flow.

Rotating solitons exist on all surfaces of revolution, thus generalizing the planar Yin-

Yang curve. They correspond to fixed points of equation (6.14), with ω 6= 0, satisfying the

ordinary non-linear differential equation for ρ(θ),

d

dθ
arctan

(

1

f(ρ)

dρ

dθ

)

+ f(ρ)Φ′(ρ) − f ′(ρ) + ωA2f(ρ)
dρ

dθ
= 0 . (6.15)

This equation can not be easily solved in closed form. Even in the simplest case of planar

rotating solitons, for which equation (6.15) can be integrated once, the solution is only given

implicitly. On curved surfaces, the background fields undergo continuous deformations by

Ricci flow, and, therefore, rotating solitons correspond to curves solving equation (6.15) at

each given instance of time. Some non-trivial examples will be studied later.

Another class of special solutions arise on all surfaces of revolution when ρ is indepen-

dent of the angular variable θ. They correspond to circular curves that can roll on the

surface while remaining symmetric about the principal axis. In this case, ρ only depends

on t and satisfies the equation

dρ

dt
=

1

A2

(

Φ′(ρ) − f ′(ρ)

f(ρ)

)

. (6.16)

The solutions generalize the uniformly contracting circular planar curves to curved back-

grounds. However, their time evolution depends on the geometry of the surface. We will

also see examples of this later.

6.2 Branes on constant curvature surfaces

Trivial dilaton in proper coordinates implies that the profile function f(r) is independent

of t, so that all time dependence is fully encoded into the scale factor A(t). In this case,

f ′′(r)/f(r) is constant that can be normalized to −1, +1 or 0 without loss of general-

ity. These are precisely constant curvature metrics on M with positive, negative or zero

curvature, respectively, for which A2(t) turns out to be −t, t or 1, up to normalization.

Here, we will examine some simple solutions of the mean curvature flow on the sphere with
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f(r) = sinr and on the one-sheeted hyperboloid with f(r) = coshr. In the former case, r

is an angular variable ranging from 0 to π as one moves from one pole of the sphere to the

other, whereas in the latter r ranges over the entire real line.

The simplest running solutions correspond to circular curves satisfying equation (6.16).

On the sphere one gets the solution

|cosρ(t)| = − t0
t

, (6.17)

where t0 is a non-negative integration constant. Thus, as time flows from −∞ to 0 the

background is a uniformly contracting sphere. The circular brane appears to come from

the equator and slip off the side, on either hemisphere, until it fully collapses to a point at

t = −t0 before the big crunch. There is also the special solution ρ = π/2, which corresponds

to t0 = 0 and represents a great circle that follows the collapse of the sphere all the way to

a point. The corresponding solution on the hyperboloid reads

|sinhρ(t)| =
t0
t

, (6.18)

where the integration constant t0 is again non-negative. In this case, as time flows from 0 to

∞, the background evolves uniformly by lowering its curvature. The circular brane appears

to come from the asymptotic region of the hyperboloid, which corresponds to ρ → ±∞,

and stabilizes to a circle at ρ = 0 in the infra-red limit. As before, there is also the special

solution ρ = 0 for t0 = 0 that does not roll at all on either side.

Another interesting problem is the construction of rotating solutions on constant cur-

vature spaces. The problem has already been investigated, to some extend, in ref. [66]

under the unnatural condition that the metric does not Ricci flow. These results, however,

can be easily generalized to uniformly varying backgrounds without much effort. One way

is to rescale the metric and redefine time so that constant curvature metrics appear as

fixed points of the normalized Ricci flow. The mean curvature flow should be modified

accordingly when expressed in the new variables. Another way is to use equation (6.15)

for rotating solitons, as it stands, and define an effective angular velocity,

ωeff = ωA2 . (6.19)

Then, the shape of the resulting curves is identical to those drawn in ref. [66] at any given

instance of time. As time flows, ωeff changes; on the sphere it diminishes from ∞ to 0,

whereas on the hyperboloid it increases from 0 to ∞. Following the analysis of ref. [66],

we give a schematic representation of the rotating solitons at some intermediate time.

On the sphere, the curve oscillates around the equator and keeps coming closer to it

as it winds. In the process it also keeps crossing itself. This behavior is best seen by the

numerical plot r(θ) shown in figure 15 below.

On the hyperboloid, the curve resembles the shape of the planar Yin-Yang curve, which

is now stretched on from −∞ to ∞ along the symmetry axis. The corresponding solution

is depicted in figure 16 below.
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Figure 15: The graph of a rotating soliton on the sphere.

Figure 16: A rotating soliton on the one-sheeted hyperboloid.

6.3 Branes on Ricci solitons

The simplest static example of curved ambient space is provided by the following choice of

metric and dilaton fields, in conformally flat frame,

Ω(y) = 1 + e2y , Φ(y) = −1

2
log

(

1 + e−2y
)

. (6.20)

The coordinate y takes all values from −∞ to ∞, whereas x is an angular variable ranging

from 0 to 2π; in this frame, the space is conformally equivalent to the cylinder5. The

5An alternative description exists by changing frame to X ± iY = exp(−y ± ix) that maps the cylinder

to the plane. Then, the metric is conformally equivalent to the plane with metric ds2 = (dX2 + dY 2)/(1 +

X2 + Y 2), whereas the dilaton is −2Φ = log(1 + X2 + Y 2).
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configuration corresponds to the well known Ricci soliton associated to non-trivial fixed

point of the Ricci flow in the presence of dilaton, [51] (but see also [8]). In the physics

literature it serves as model for string propagation on a two-dimensional Euclidean black

hole background, [55]. The mean curvature flow will be studied in this space using equa-

tion (6.10) in the system of conformally flat coordinates. Since ∂yΩ = 2Ω − 2, the mean

curvature flow simplifies to

∂ϕ

∂t
= Ω

(

ϕ′′(x)

1 + ϕ′2(x)
+ 1

)

+ kxϕ′(x) − ky . (6.21)

This background exhibits a rotational isometry generated by ∂/∂x, so that kx = ω and

ky = 0 with angular velocity ω of either sign. Clearly, there is no other isometry.

The fixed points of the mean curvature flow correspond to curves described by the

equation
ϕ′′(x)

1 + ϕ′2(x)
+ 1 = 0 , (6.22)

without taking into account reparametrizations generated by the Killing vector field k. It

is identical to the hair-pin equation on the plane, with parameter v = −1, and the general

solution is

ey−y0 = cos(x − x0) , (6.23)

allowing also for the possibility to shift the coordinates by constant (x0, y0). Thus, we

recover the standard D1-brane on the Ricci soliton that exists by itself, without need for

reparametrizations, thanks to the special form of the supporting dilaton field. This coin-

cidence makes the hair-pin a rather special configuration with infinitely many symmetries

inherited by the Euclidean black hole geometry.

The same solution can be alternatively described using proper coordinates (r, θ) in

target space. In this frame, the Ricci soliton corresponds to the choice of profile and

dilaton functions

f(r) = tanhr , Φ(r) = −log(coshr) , (6.24)

whereas the overall scale factor A is a constant set equal to 1. Then, the hair-pin on the

Ricci soliton is the curve r = ρ(θ),

sinhρ0

sinhρ
= cos(θ − θ0) , (6.25)

which provides the static solution of equation (6.14) with ω = 0. Of course, the two

descriptions are related to each other by the coordinate transformation

sinhρ = e−y , θ = x . (6.26)

The tip of the cigar corresponds to y = ∞ and its asymptotic region to y = −∞.

The parameters ρ0 and θ0 are integration constants, but, clearly, ρ ≥ ρ0 for the solution

to make sense. Thus, ρ0 determines the position of the tip of the hair-pin relative to the tip

of the cigar, which is located at ρ = 0. By the same token, y ≤ y0. The other parameter,

θ0 = x0, measures the rotation angle of the cigar relative to a given position about its axis
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Figure 17: A hair-pin curve supported by the cigar background.

and can be set equal to zero for all practical purposes. In the asymptotic region, ρ → ∞,

the cigar looks like a cylinder and the hair-pin reduces to a pair of diametrically opposite

parallel lines placed on it, since θ − θ0 → ±π/2. As ρ decreases, these two lines bend

towards each other and meet smoothly at ρ = ρ0. When ρ0 = 0, the curve passes through

the origin and its two legs are diametrically opposite for all ρ. The solution represents an

open curve sitting still on the surface of a semi-infinite long cigar, as shown in figure 17

below.

We will see later that this particular configuration can be used as component for

constructing the analogue of a paper-clip on axially symmetric evolving backgrounds with

spherical topology.

Rotating solutions on the two-dimensional black hole geometry correspond to general-

ized fixed points of the mean curvature flow with ω 6= 0. Explicit calculation shows that

the resulting equation can be integrated once, as on the plane, leading to

arctanϕ′(x) + x − ω

2
log

(

1 + e−2y
)

= 0 . (6.27)

The same analysis can be performed in proper coordinates, where the rotating soliton

satisfies the equation

arctan

(

cothρ
dρ

dθ

)

+ ωlog(coshρ) = θ − θ0 . (6.28)

To compare this curve to the planar Yin-Yang spiral, it is necessary to use a common

frame. Thinking of the plane as being conformally equivalent to a cylinder (x, y) with

periodic variable x and metric ds2 = (dx2 + dy2)/e2y , the planar Yin-Yang curve satisfies

the equation

arctanϕ′(x) + x − ω

2
e−2y = 0 . (6.29)

The two equations match on the side y → ∞, in which case the rotating soliton becomes

independent of ω and approximates the hair-pin curve arctanϕ′(x) + x = 0, i.e., exp(y −
y0) = cosx. Note that the tip of the hair-pin should be placed very far away, i.e., y0 → ∞,

for otherwise the approximation would have not been valid. According to this, the rotating

solution on the cigar starts from its tip, as expected by symmetry.
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The identification of the two curves is also valid relatively close to infinity, since log(1+

e−2y) ≃ e−2y, but it breaks down to order O(e−4y). Thus, close to the tip of the cigar, the

equation becomes approximately

ϕ′(x) = −tanx +
ω

2

e−2y

cos2x
, (6.30)

dropping all terms of order O(e−4y), and it is solved by y = ϕ(x),

e2y = e2y0cos2x +
ω

3
(tanx + sin2x) . (6.31)

Setting δy = y−y0 and expanding the trigonometric functions around the tip, where x = 0,

we obtain to first order

δy =
ω

2
e−2y0δx . (6.32)

This shows the tendency of the curve to twist as it moves away from the tip.

On the other hand, close to the asymptotic region of the cigar, y → −∞, the rotating

soliton is described approximately by equation

ϕ′(x) = tan(ωy − x) . (6.33)

It is solved exactly by the following expression

y + ωx = log

(

sin(ωy − x) − 1

ω
cos(ωy − x)

)

(6.34)

up to an irrelevant integration constant. Then, it becomes clear that the asymptotic

dependence of the curve y = ϕ(x) is

ωy − x = arctan
1

ω
(mod π) , as y → −∞ . (6.35)

For, otherwise, the right-hand side of equation (6.34) can not match the infinity appearing

on the left-hand side. This assertion can also be verified by direct substitution of (6.35) into

equation (6.33). When ω = 0, the asymptotic relation (6.35) reproduces the well known

asymptotic description of the hair-pin as two parallel lines with x = π/2 (modπ). When

ω 6= 0, the hair-pin ends up in a double helix whose components are π/ω apart from each

other. The sign of ω determines the handedness of the helix.

The corresponding curve is centered at the tip of the cigar and winds around the

asymptotic cylinder as shown in figure 18. The structure of the curve is more complicated in

the middle region and thorough numerical analysis is required to draw its shape. Certainly,

it is quite different from the planar Yin-Yang curve.

Finally, we consider running solutions on the cigar that represent circular branes placed

perpendicularly to the axis of symmetry. In this case ρ depends solely on t and simple

integration of equation (6.16) yields

coshρ = et0−t (6.36)

when A = 1. These curves originate from the asymptotic region of the cigar at t = −∞ and

move towards the tip until they fully collapse to the point ρ = 0 at some finite time t = t0.
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Figure 18: The end-point structure of a rotating soliton on the cigar.

They can be thought as analogue of the uniformly shrinking circles on the plane, although

the radial dependence on t is different now. It is natural to expect that all closed curves

winding around the cigar will contract to a point at its tip irrespective of initial conditions.

It should be analogous to the well known fact on the plane that all closed curves shrink to

a point at finite time.

6.4 Branes on a sausage

The sausage model was introduced in the physics literature more than a decade ago, [41],

and describes axially symmetric deformations of the sphere by Ricci flow. It is defined by

the following ansatz

Ω(y, t) = a(t) + b(t)cosh2y (6.37)

in a system of conformally flat coordinates (x, y), whereas Φ(y) = 0. The coordinate y

can take all values on the real line and x is taken to be periodic ranging from 0 to 2π.

This ansatz yields a consistent truncation of the Ricci flow to a simpler system of ordinary

differential equations for the two moduli a(t) and b(t),

da

dt
= 2b2 ,

db

dt
= 2ab , (6.38)

which can be easily solved as

a(t) = γcoth(−2γt) , b(t) =
γ

sinh(−2γt)
. (6.39)

The integration constant γ is assumed to be non-negative and determines the ultra-violet

limit of the configuration. Indeed, as t → −∞, Ω tends to a constant value, γ, and the space

looks like an infinitely long cylinder of radius 1/
√

γ. Then, as t increases, the configuration

looks like a sausage that evolves by becoming shorter and rounder until it fully collapses to

a point at some finite time t = 0. When γ = 0, the trajectory corresponds to a uniformly

contracting round sphere of radius
√−t.

On this two-parameter space we will examine the mean curvature flow for embedded

curves, y = ϕ(x(t), t),

∂ϕ

∂t
=

γ

sinh(−2γt)

(

(cosh(−2γt) + cosh2y)
ϕ′′(x)

1 + ϕ′2(x)
+ sinh2y

)

(6.40)

and construct special solutions that generalize the paper-clip and the oxlip planar curves

to the sausage. They provide explicit realizations of the curve shortening problem on a
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Figure 19: The paper-clip as composition of two hair-pin curves on cigars.

deforming background and, in this respect, there are two natural scale parameters at work.

There is the time at which the background is fully collapsed to a point, taken here to

occur at t = 0, and the time at which the closed curves collapse to a point, denoted by

t0 in the sequel. Clearly, t0 ≤ 0 and in most cases one expects, based on intuition, that

the curve will become singular before the background. The paper-clip and other examples

that will be considered later have t0 < 0, but for the oxlip model we find t0 = 0. The

solutions simplify considerably when γ = 0, in which case they describe deforming curves

on a uniformly contracting sphere.

It can be easily verified that equation (6.40) admits the following simple solution

κcoshy

sinh(−γt)
= cos(x − x0) , (6.41)

where κ is a positive integration constant and x0 represents the freedom to rotate the

sausage by an arbitrary angle about its axis of symmetry. This solution describes a closed

curve on the sausage that can be thought as superposition of two hair-pin solutions. As

such, it provides the analogue of the paper-clip curve on the sausage. One way to see this

is by rewriting the sausage model metric as

ds2
M =

1

γ

(

1

1 + e2y+2γt
− 1

1 + e2y−2γt

)

(dx2 + dy2) . (6.42)

It represents the bound state of two cigars glued together in their asymptotic region that

begin eating each other as time flows. The corresponding dilaton fields also come with

opposite signs and cancel each other, up to spatially independent terms. Then, the closed

curve (6.41) can be interpreted as two hair-pins placed appropriately against each other

on the constituents cigars. The decomposition of the curve on very long sausages reads, in

particular,

κ
(

ey+γt + e−y+γt
)

= cos(x − x0) + O(e2γt) . (6.43)

The gluing of the individual components is performed in a certain way, as depicted

schematically in figure 19 below. Another type of gluing condition will be considered later

that is reminiscent of the oxlip planar curve.

The picture becomes more clear in proper coordinates, which are best suited for draw-

ing pictures. Introducing the change of variables

sn(r; k) = tanhy , θ = x , k = tanh(−γt) , (6.44)

the sausage model metric assumes the following form

ds2
M =

k

γ

(

dr2 + sn2(r; k)dθ2
)

(6.45)
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written in terms of the Jacobi elliptic function sn(r; k) with modulus k. One tip of the

sausage is located at r = 0 and the other at r = 2K(k) given in terms of the complete

elliptic integral of the first kind. There is also a dilaton field

Φ′(r) = rk′2 − E(r, k) (6.46)

whose form is determined by consistency of the Ricci flow in proper coordinates. Here,

E(r, k) denotes the incomplete elliptic integral of the second kind; Φ(r, t) can be expressed

in terms of Jacobi’s theta function by simple integration.

The ultra-violet limit of the ambient space corresponds to k = 1, in which case the

length of the sausage becomes infinite, whereas k = 0 corresponds to t = 0 and the

configuration fully collapses to a point. In the ultra-violet limit, the sausage looks like a

cylinder from its middle point y = 0. In proper coordinates, however, one sees an infinitely

long sausage from one of its tips and the structure looks identical to the two-dimensional

cigar,

ds2
M ≃ 1

γ
(dr2 + tanh2rdθ2) , (6.47)

since sn(r; 1) = tanhr. The radius of the circle in the asymptotic region r → ∞ is 1/
√

γ, as

required. The picture is alike from the other tip, since sn2(r+2K(k); k) = sn2(r; k). Thus,

the interpretation of the sausage as bound state of two Euclidean black holes becomes

rather precise.

The paper-clip on the sausage takes the following form in proper coordinates,

κ

k

dn(r; k)

sn(r; k)
= cos(θ − θ0) (6.48)

using Jacobi elliptic functions. In the ultra-violet limit k = 1 one has

dn(r; 1)

sn(r; 1)
=

1

sinhr
, (6.49)

and so one recovers the hair-pin curve (6.25) on one of the two constituent cigars with

parameter κ = sinhr0. From the other tip of the sausage one sees a second hair-pin placed

symmetrically with respect to its center, as in a mirror; on the second hair-pin one makes

the identification κ = −sinhr0 because the function dn(r; k)/sn(r; k) flips sign when its

argument is shifted by 2K(k). Then, the two pieces are glued together in the central

region. The open ends of each hair-pin, which are diametrically opposite in the ultra-violet

limit, are joined smoothly to form an infinitely long paper-clip on an infinitely long sausage.

As time goes on, the curve tends to slip off the side until it collapses to a point before the

sausage shrinks to zero size. The collapse of the curve occurs at time t0

sinh(−γt0) = κ , i.e., k =
1

√

1 + 1/κ2
. (6.50)

The parameters γ and κ are, in general, independent. figure 20 below depicts the

evolution pattern of the paper-clip on a sausage with γ 6= 0. The limiting case of a paper-

clip on the uniformly contracting sphere appears to be singular because γ = 0. It can only
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Figure 20: Schematic evolution of a paper-clip on the sausage.

be accommodated by considering a correlated limit of parameters so that κ/γ remains fixed

to a constant.

An interesting variant of the solution above is provided by the following curve on the

sausage,

κ
sinhy

cosh(−γt)
= cos(x − x0) . (6.51)

As can be easily checked, it satisfies the mean curvature flow (6.40). When expressed in

proper coordinates it takes the form

κ
cn(r; k)

sn(r; k)
= cos(θ − θ0) . (6.52)

In the ultra-violet limit, the curve looks similar to the one considered before, because

cn(r; 1) = dn(r; 1). However, the picture is slightly different from the other tip of the

sausage because both functions sn(r; k) and cn(r; k) flip sign when their argument is shifted

by 2K(k). As a result, the relative orientation of the two hair-pins changes and one gets

κ = sinhρ0 on both sides. Thus, the solution represents a closed curve on the sausage,

which is formed by putting together two hair-pins on the constituent cigars, as before, but

this time the gluing prescription is different. In particular, one of the two cigars should
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∆θ = π

Figure 21: Cross-joining two hair-pin curves on cigars.

be rotated by an angle π before gluing it to the other. This operation does not alter the

metric of the ambient space, but affects the curves embedded in it. This is also clearly seen

by comparing equation (6.51) on very long sausages,

κ
(

ey+γt − e−y+γt
)

= cos(x − x0) + O(e2γt) , (6.53)

to the analogous expression (6.43) for the paper-clip curve. The flip of the relative sign

is attributed to the rotation of the second component. The resulting configuration, before

and after the twist, is depicted in figure 21 below.

This solution provides the analogue of the oxlip curve on the sausage. The analogy is

revealed by comparing equation (6.51) in conformally flat frame to the oxlip solution on

the plane. They both share the characteristic sinhy dependence as opposed to the coshy

dependence of the paper-clip curves. The oxlip solution exists for all time as long as the

ambient space is regular. Thus, on the plane, it exists for infinitely long time, whereas on

the sausage it shrinks together with the space until they become singular simultaneously

at t = 0. This behavior is easily understood on intuitive grounds: the curve goes around

the two tips of the sausage on opposite sides and cannot slip off to one side. As time goes

on, the curve has the tendency to become shorter by moving evenly towards the center of

the sausage, which also gets shorter and rounder, until the big crunch. The topology of

the ambient space affects only the shape of the oxlip curve, which is closed on the sausage

and open on the plane.

7. Mean curvature flow in three dimensions

In this section we consider the mean curvature flow of two-dimensional surfaces embedded

in three dimensions. We will only examine the case of flat ambient space, R3, which already

poses a non-trivial problem. Branes in curved ambient spaces are much more difficult to

study since the mean curvature flow should be combined with the Ricci flow, which is very

complex problem. We will avoid such unnecessary complications and also ignore the effect

of fluxes that can be turned on in three (and higher) dimensional spaces. The role of fluxes

in the boundary renormalization group equations of sigma models is fully captured by the

Dirac-Born-Infeld that will be further studied elsewhere.
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7.1 General aspects of evolving branes in R3

The mean curvature flow of surfaces in R3 is obtained by considering the general embedding

equation

X = X(s, u; t) , Y = Y (s, u; t) , Z = Z(s, u; t) (7.1)

associated to two parameters s and u and the renormalization group time t. It is convenient,

where appropriate, to think of the surface as graph of a function Z = ϕ(X(t), Y (t); t) that

evolves in time.

Using the formulae given in appendix A, it turns out that the mean curvature of the

surface is

H =

(

1 + (∂Y ϕ)2
)

∂2
Xϕ +

(

1 + (∂Xϕ)2
)

∂2
Y ϕ − 2(∂Xϕ)(∂Y ϕ)(∂X∂Y ϕ)

(

√

1 + (∂Xϕ)2 + (∂Y ϕ)2
)3 , (7.2)

whereas the inward unit normal vector is

n̂ =
1

√

1 + (∂Xϕ)2 + (∂Y ϕ)2
(−∂Xϕ, − ∂Y ϕ, 1) . (7.3)

Then, the mean curvature flow takes the form

∂ϕ

∂t
=

(

1 + (∂Y ϕ)2
)

∂2
Xϕ +

(

1 + (∂Xϕ)2
)

∂2
Y ϕ − 2(∂Xϕ)(∂Y ϕ)(∂X∂Y ϕ)

1 + (∂Xϕ)2 + (∂Y ϕ)2

+ξX∂Xϕ + ξY ∂Y ϕ − ξZ (7.4)

by also adding the effect of arbitrary reparametrizations generated by a vector field

(ξX , ξY , ξZ), if appropriate.

The induced metric on the two-dimensional surface evolves according to the equations

∂

∂t
gAB = −2HKAB ,

∂

∂t
gAB = 2HKAB , (7.5)

so that
∂

∂t

√

detg = −H2
√

detg . (7.6)

Also, the second fundamental form of the surface follows the evolution

∂

∂t
KAB = gCD∇C∇DKAB − 2H(K2)AB + (TrK2)KAB , (7.7)

where (K2)AB = gCDKACKBD and TrK2 = gABgCDKACKBD = H2 − R is expressed

in terms of the Ricci curvature of the surface by the Gauss-Codazzi relations. Then, the

extrinsic mean curvature satisfies the parabolic equation

∂H

∂t
= gAB∇A∇BH + (TrK2)H (7.8)

generalizing equation (3.13) to two-dimensional branes.

Clearly, the structure of these equations is much more complicated than those for the

evolution of planar curves. Although several general results have been obtained in the

literature so far, the level of our current understanding is by no means complete. Some

aspects will be discussed here while considering the dimensional reduction of the mean

curvature flow in R3 for special classes of surfaces.
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7.2 Dimensional reduction of the curvature flow

We present two general classes of surfaces, associated to particular ansatz for their embed-

ding functions, which allow for consistent reduction of the problem to an effective curve

shortening problem on the plane. They correspond to cylindrical surfaces and surfaces

of revolution as brane models. Specific solutions of different topologies will also be dis-

cussed in the sequel. It should be mentioned, however, that there are other examples of

surfaces, like the class of ruled surfaces, which do not admit consistent truncation of the

mean curvature flow away from fixed points (in that case the helicoid).

(i) Cylindrical surfaces: the simplest possibility arises for surfaces with embedding

equations

X = x(s; t) , Y = y(s; t) , Z = u , (7.9)

where (x(s), y(s)) is the parametric form of a planar curve C that evolves in time and u

is the second parameter on the surface. These are cylindrical surfaces of the form R × C
and it is entirely obvious that their mean curvature flow in R3 is equivalent to the mean

curvature flow of the curve C on the plane perpendicular to the Z-axis. As such, they

provide a trivial dimensional reduction of the mean curvature flow to lower dimensions.

Other ansatz may also reduce the problem to lower dimension, as deformations of planar

curves, but the effective dynamics differs from the ordinary mean curvature flow in R2, as

will be seen shortly.

Any solution of the mean curvature flow on the plane is elevated to a deforming cylin-

drical brane in R3, and vice-versa. Thus, for example, all self-shrinking solutions of this

type are classified by the cylinder R × S1 and the self-intersecting surfaces R × Γp,q given

in terms of the Abresch-Langer curves Γp,q. Also, the self-expanding solution, associated

to the decay of a wedge on the plane, is elevated to an open surface going out of the inter-

section of two planes in R3, meeting on the Z-axis. In the context of quantum field theory

one has D2-branes in the conformal field theory of three free bosons but the third boson

essentially acts as spectator in the boundary flow equations.

(ii) Surfaces of revolution: next, we consider surfaces of revolution in R3 described in

all generality by the embedding equation

X = y(s; t) cosθ , Y = y(s; t) sinθ , Z = x(s; t) . (7.10)

They are formed by rigid rotation of a planar curve (x(s), y(s)) around the Z-axis by an

angle θ that ranges from 0 to 2π. The time evolution is encoded into the revolving planar

curve and the mean curvature flow in R3 is consistently reduced to planar deformations of

a certain kind.

The reduced flow is derived by first computing the tangent vectors to the surface,

~es =

((

∂y

∂s

)

cosθ,

(

∂y

∂s

)

sinθ,
∂x

∂s

)

, ~eθ = (−y sinθ, y cosθ, 0) , (7.11)

which give rise to the induced metric with components

gss =

(

∂x

∂s

)2

+

(

∂y

∂s

)2

, gθθ = y2, gsθ = 0 . (7.12)
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The normal vector inward to the brane is

n̂ =
1

√

1 + ϕ′2(x)

(

cosθ, sinθ,−ϕ′(x)
)

(7.13)

using the notation y = ϕ(x) for the graph of the underlying planar curve. Then, the mean

curvature of the surface turns out to be

H = gAB (∇A~eB) · n̂ =
1

√

1 + ϕ′2(x)

(

ϕ′′(x)

1 + ϕ′2(x)
− 1

ϕ(x)

)

. (7.14)

The mean curvature flow in R3 is dimensionally reduced to the following deformation

on the plane
∂ϕ

∂t
=

ϕ′′(x)

1 + ϕ′2(x)
− 1

ϕ(x)
, (7.15)

which clearly differs from the usual mean curvature flow in R2 by the extra term 1/ϕ(x).

This difference is attributed to the extrinsic curvature of the S1 direction following the

revolution around the Z-axis. Reparametrizations generated by a vector field ~ξ can also

be added along the flow, as usual. Note, however, that there is no simple variant of

equation (3.13) satisfied by the curvature of the underlying planar curve that could be

used further, as in sections 3 and 4.

Static solutions are characterized by the equation ϕ(x)ϕ′′(x) = 1 + ϕ′2(x) and they

correspond to minimal surfaces of revolution in R3. In particular, one obtains

ϕ(x) = coshx , (7.16)

which is the graph of the catenary curve on the plane. The solution is equivalently described

in terms of Liouville equation

f ′′(x) + ef(x) = 0 (7.17)

using the relation

ef(x) =
2

ϕ2(x)
=

2

cosh2x
. (7.18)

Then, according to the embedding equations in R3, the complete surface is described by

the algebraic equation

X2 + Y 2 = cosh2Z (7.19)

so that the two principal curvatures cancel each other at all points. The catenoid surface

approximates the one-sheeted hyperboloid X2 + Y 2 − Z2 = 1 only for small Z; it yields

the well known shape of soap bubbles extended between two parallel circular boundaries.

Another minimal surface in R3 is the plane, but it appears in a somewhat singular way in

the present formalism, as surface of revolution of the planar line x = 0 around the Z-axis

perpendicular to it.

Self-similar solutions provide the simplest examples of immersed surfaces that evolve

by overall time scaling so that the functions (7.10) have common factorized dependence by√
2ct. Their position vector ~r = (X,Y,Z) satisfies by definition the special relation

Hn̂ = c~r . (7.20)
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For surfaces of revolution it yields the effective planar curve equation for y = ϕ(x)

c(y − xϕ′(x)) =
ϕ′′(x)

1 + ϕ′2(x)
− 1

ϕ(x)
, (7.21)

since (x(s; t), y(s; t)) also evolves by overall scaling. Here, we only discuss examples of

self-shrinkers with c < 0 so that t runs from −∞ to 0 and the whole surface shrinks to

the origin by dilations. We will examine solutions with cylindrical, spherical and toroidal

topology and refer briefly to some of their consequences.

In all cases, these surfaces correspond to stationary points of Huisken’s functional
∫

N
ecr2(s)/2

√

detg dsdθ =

∫

N
ec(x2(s)+y2(s))/2 y(s)

√

(∂x/∂s)2 + (∂y/∂s)2 dsdθ (7.22)

for the normalized mean curvature flow in R3. Integration over θ is performed trivially and

one is left with an integral over s representing the length of a planar curve with appropriate

metric. In this context, self-similar solutions are effectively described by geodesics in the

upper half-plane (x, y), with y > 0, that comes equipped with the metric

ds2 = y2ec(x2+y2)(dx2 + dy2) . (7.23)

If the factor y2 were missing the answer would be the same as for the geodesic interpretation

of scaling solutions on the plane found in section 4.4. The presence of this additional factor

accounts for the extra term 1/ϕ(x) in equation (7.15), differentiating the dimensionally

reduced equation from the ordinary planar mean curvature flow.

The first example is provided by self-shrinking cylinders of radius a
√

2ct with a =

1/
√−c, which are common to the classes (i) and (ii). In the present context, they cor-

respond to solutions of equation (7.21) with ϕ(x) = a. Next, there is the example of

self-shrinking spheres of radius a
√

2ct with a =
√

−2/c. They correspond to solutions of

equation (7.21) with ϕ(x) =
√

a2 − x2, which represents a semi-circle in (x, y) plane. Com-

parison between the two solutions shows that spheres shrink faster that cylinders of equal

initial radius. This is also expected on intuitive grounds since spheres are more curved

than cylinders of equal radii. Finally, there are self-shrinking doughnuts in R3 whose exis-

tence was first established in ref. [67]; for a discussion see also ref. [18]. They correspond

to simple closed geodesic in the upper half-plane equipped with the metric (7.23), which

is symmetric with respect to reflection in the y-axis. The proof relies on the so called

shooting method and proceeds in several steps that are omitted here. Unfortunately, there

is no closed formula that describes the corresponding planar curve that accounts for such

solution. Certainly, it can not be a round circle for this does not provide solution to the

reduced flow (7.21).

The classification of self-similar solutions in R3 and the formation of singularities under

the flow are not fully explored in all generality. Apart from the obvious scaling solutions

R × S1, R × Γp,q, the round S2 and the self-shrinking doughnut there can be many more

surfaces of various topologies that may also admit self-intersections. The general situation

is well understood only for surfaces of positive mean curvature, since the sphere is the

only compact surface of this kind that evolves by scaling, [48]. There are other important
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differences with the mean curvature flow in R2 that complicate things further. Closed

curves embedded in the plane always shrink to a point irrespective of their initial shape.

Even if the curve is not convex at some initial time, it will become convex at later times, [47],

and then approach the homothetic collapse of the round circle towards a point, [46]. This

property does not generalize to higher dimensions as singularities can arise before the

surface has the chance to become convex.

The existence of self-similar shrinking doughnuts can be employed to provide a qual-

itative proof of this behavior, [67]. For it suffices to consider a dumbbell in R3 consisting

of two large approximately round spheres connected with a thin long cylinder as initial

configuration. By considering a small self-similar shrinking doughnut that encircles the

neck of the surface, one easily sees that the doughnut, and hence the neck of the dumbbell,

will become singular well before the two spherical regions have a chance to collapse.

Similar constructions and arguments apply to hypersurfaces of codimension 1 embed-

ded in all higher dimensional flat spaces. Much less is known about the general features of

evolving hypersurfaces in flat space when their codimension is bigger than 1 and/or when

the ambient space is curved.

8. Conclusions

The quantum field theory of two-dimensional sigma models provides a natural framework

for the realization of both intrinsic and extrinsic curvature flows. These theories have

all the necessary geometric ingredients to define the flows. Classically, the target space

fields as well as the embedding equations for branes are fixed once and for all, but, in

the quantum theory, they are regarded as generalized couplings that depend on the energy

scale. Thus, the renormalization group equations of the sigma models induce flows that can

be computed perturbatively. The first order corrections in α′ expansion are given by the

curvature (intrinsic or extrinsic) and the resulting equations combine into a coupled system

of Ricci and mean curvature flows. There can be additional fields, such as anti-symmetric

tensor, dilaton and gauge fields, whose beta functions combine with the others into a larger

system of flows. The deformations of the bulk couplings form a closed system, which is

independent of the existence of branes and can be studied separately. On the other hand,

the deformations of the boundary couplings depend on the background in which branes

are embedded. The resulting picture puts the boundary renormalization group equations

on firm mathematical base, as for the bulk equations. It also suggests generalizations of

the combined Ricci and mean curvature flows in the presence of fluxes, via the Dirac-Born-

Infeld action, which demand further attention.

Fixed point configurations are reached when the quantum field theory is conformal. It

is possible, however, to have non-conformal boundary conditions for branes that deform in

a conformally invariant background. Then, in this context, ordinary D-branes are charac-

terized by conformally invariant boundary conditions in a conformal field theory. We have

examined several interesting examples of either kind in two- and three-dimensional ambient

spaces using appropriate mini-superspace reductions of the more general problem. Even

in the simplest case of the conformal quantum field theory of two free bosons, represented
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by the plane, the possibilities for brane evolution are enormous and there is no systematic

way to solve the associated curve shortening problem in all generality. It will be useful

to develop new algebraic techniques, as for the Ricci flow in two dimensions, which will

enable to cast the mean curvature flow into zero curvature form. In the same spirit, it

will be interesting to investigate all integrable perturbations of a given fixed point solution,

such as the hair-pin, and associate renormalization group trajectories to new infra-red fixed

points, in analogy with the integrable perturbations of bulk conformal field theories.

The construction of entropy functionals and their physical interpretation in terms of

the underlying quantum field theory of Dirichlet sigma models are other directions of future

research. In principle, one should be able to generalize Huisken’s functional, mentioned

in section 3, to branes deforming in curved ambient spaces with or without fluxes. Even

the simplest cases corresponding to the target space of exact conformal field theories,

such as the two-dimensional Euclidean black hole or S3 stabilized by fluxes, have not been

considered to this day. It is also natural to expect that the critical points of such generalized

entropy functionals will help to characterize the singularities of collapsing branes in curved

spaces, in analogy with the self-shrinking solutions in flat space. When the branes deform

in running backgrounds the problem becomes even more interesting for there can be branes

that become singular before or simultaneously with the metric. None of these possibilities

have been analyzed before in the mathematics literature and the corresponding entropy

functionals are yet to be found. It should also be noted in this context that the g-function

of boundary flows, [68, 69], is still awaiting its proper mathematical place in the framework

of mean curvature flows, as for the c-function of bulk flows expressed by Perelman’s entropy

of Ricci flows, [43].

The boundary state formalism of Dirichlet sigma models should be developed further in

order to provide exact characterization of the fixed points as well as the running solutions of

the flow from the world-sheet view-point. In this context, it will be interesting to consider

the effect of instantons on the mean curvature flow, as for the Ricci flow, and investigate

the emergence of non-trivial infra-red fixed points. A simple example of this kind is the

O(3) sigma model with θ = π topological term in which there can be embedded closed

curves that normally deform to a point. The θ-term yields the Gaussian model of a free

boson as infra-red limit of the bulk theory, which is compactified on a circle of self-dual

radius, and the branes ought to flow to D-branes on this circle (see, for instance, [70] for

their complete classification). Another class of models is provided by the planar Abresch-

Langer curves, which, in the presence of the appropriate θ-term, may give rise to some kind

of minimal (p, q) exact boundary states in the quantum field theory of two free bosons.

Other interesting applications arise in the context of tachyon condensation in string theory

and in the Kondo effect (for a recent discussion see, for instance, [71]), where boundary

renormalization group equations play pivotal role. All these questions are currently under

investigation and further results will be reported elsewhere.
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A. Embedding equations in Riemannian geometry

In this appendix we review the main parts from the theory of embedding hypersurfaces in

Riemannian geometry. The presentation is kept quite general so that it can accommodate

branes of Dirichlet models with arbitrary codimension defined in general ambient target

spaces. A more complete account can be found in the textbooks; see, for example, the

classic reference [72].

Consider a Riemannian manifold M of dimension m with local coordinate system Xµ

and metric Gµν(X) so that its line element is

ds2
M = Gµν(X)dXµdXν ; µ, ν = 1, 2, · · · ,m . (A.1)

Also consider a submanifold N of M with dimension n < m and local coordinates yA

that describes an embedded hypersurface with defining relations Xµ = fµ(yA). The line

element in N is given by the corresponding metric gAB(y),

ds2
N = gAB(y)dyAdyB ; A,B = 1, 2, · · · , n , (A.2)

which, of course, is obtained by restricting the line element of the ambient space to N .

Thus, gAB(y) is the induced metric on N equal to

gAB(y) = Gµνfµ
,Af ν

,B . (A.3)

The tangent vectors to the hypersurface are given in terms of the derivatives of the

embedding functions, ∂fµ/∂yA = fµ
,A, and they are n of them labeled by the index A.

Since fµ are scalars with respect to covariant differentiation on N , we have equivalently

DAfµ = fµ
,A . The (unit) normal vectors to the hypersurface will be denoted by n̂µ

σ, thus

being labeled with the index σ = n + 1, n + 2, · · · ,m, and they are chosen to satisfy the

orthonormalization conditions

Gµν n̂µ
σn̂ν

τ = δστ . (A.4)

By definition they are orthogonal to the tangent vectors to the hypersurface, i.e.,

Gµνfµ
,An̂ν

σ = 0 , (A.5)

and all together they satisfy the following completeness relation in M,

gABfµ
,Af ν

,B + n̂µ
σn̂ν

τδ
στ = Gµν . (A.6)
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Apart from the induced metric gAB there is also the second fundamental (quadratic)

form on N , which is a collection of symmetric tensors defined as

Kσ
AB = Gµν n̂µ

σ

(

DADBf ν + Γν
ρλfρ

,Afλ
,B

)

(A.7)

and labeled by the number of transverse directions to the hypersurface. The eigen-values

of the matrix representing the second fundamental form provide the principal curvatures

of the hypersurface at each point. The (extrinsic) mean curvature of N in M is defined by

taking the trace of the second fundamental form,

Hσ = gABKσ
AB , (A.8)

whereas the mean curvature vector associated to each point of the hypersurface is defined

to be Hσn̂µ
σ. When the codimension of the hypersurface is bigger than one there is also

the so called third fundamental form on N , which is defined as

T στ
A = Gµν n̂µ

σ

(

n̂ν
τ,A + Γν

ρλn̂ρ
τf

λ
,A

)

(A.9)

and it is anti-symmetric under the interchange of its two labels σ and τ .

According to these definitions, the equations for the derivatives of the tangent and

unit normal vector fields on N take the form

DADBfµ = Kσ
ABn̂µ

σ − Γµ
ρλfρ

,Afλ
,B , (A.10)

and

n̂µ
σ,A = Kσ

ABgBCfµ
,C − Γµ

ρλfρ
,An̂λ

σ − T στ
A n̂µ

τ , (A.11)

thus extending the Serret-Frenet relations for embedded curves in R3 to general situations.

They are called embedding equations since the hypersurface is completely specified by the

set of these vectors.

Finally, there are compatibility conditions for the existence of solutions to the embed-

ding equations, when a given system of tangent and unit vectors is prescribed, which take

the following form:

RABCD = Rµνρλfµ
,Af ν

,Bfρ
,Cfλ

,D + Kσ
C[AKσ

B]D , (A.12)

D[CKσ
B]A = Rµνρλfµ

,Afρ
,Bfλ

,Cn̂ν
σ + T τσ

[C Kτ
B]A , (A.13)

D[BT στ
A] + T ρσ

[B T ρτ
A] + gCDKσ

C[BKτ
A]D + Rµνρλfµ

,Af ν
,Bn̂ρ

σn̂λ
τ = 0 . (A.14)

Summation is implicitly assumed over all repeated indices. The first two conditions are

known as Gauss-Codazzi equations, whereas the last one is known as Ricci equation. They

all relate the various fundamental forms with the Riemann curvature tensor on N and M.

In general, there are more unknown functions than relations in the embedding equations,

but their number is reduced by performing local transformations in the normal space to

the hypersurface, which rotate the components of the second and third fundamental forms.
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B. Deforming curves and integrability

The mean curvature flow on the plane is special case of more general dynamics of curves

that deform as
∂~r

∂t
= Un̂ + Wt̂ . (B.1)

The unit normal and tangent vectors provide the orthonormal base to decompose vectors

at each point of the curve and the coefficient functions U and W are taken to be local

functionals of S = −~r · n̂ or functionals of the extrinsic curvature H and their derivatives.

It is always convenient to think of the extrinsic curvature as function of the slope β, in

which case H(β) is related to S(β) by equation (3.11). Then, the mean curvature flow, in

its simplest form, ∂~r/∂t = Hn̂, corresponds to the choice U = H and W = 0, whereas the

normalized mean curvature flow ∂~r/∂t = Hn̂+~r corresponds to U = H(β)−S(β) and W =

S′(β), since ~r = (~r · t̂)t̂+(~r · n̂)n̂ = S′(β)t̂−S(β)n̂. Under the general circumstances (B.1),

the evolution for the extrinsic curvature becomes, [73],

∂H

∂t
= H2

(

U ′′(β) + U
)

+ HH ′(β)
(

W ′′(β) + W
)

, (B.2)

substituting for equation (3.13) or (3.14) when U(β) and W (β) are arbitrary.

Neither variant of the mean curvature flow preserves the length of the curve. If we

are prepared to study generalized evolution equations (B.1) that keep invariant the length

of the curves, not only globally but also locally, then we are led to consider coefficient

functions that satisfy the special relation

W ′(β) = U(β) . (B.3)

In this case, the derivatives with respect to the arc-length l and time t commute. Fur-

thermore, if U is of the general form HV ′(β) = dV (l)/dl for some local functional V , the

evolutions so defined will also preserve the total area surrounded by such closed curves.

The physical picture is to consider inextensible strings, open or closed, that deform on the

plane by those general rules. It is quite remarkable that there is an infinite hierarchy of

flows, other than the mean curvature flow, which satisfy the constraints mentioned above

and yield integrable equations for H(β), which in turn can determine the curve by equa-

tion (3.12). This puts our investigation in a wider framework and points out that, unlike

other cases, the mean curvature flow does not seem to reduce to some known integrable

system.

Elaborating more on this point, note that the choice W (β) = H2(β)/2 and U(β) =

HH ′(β), which is consistent with the relation (B.3), amounts to having a third order

differential equation for H(β), as follows from the general evolution (B.2) above, that is

equivalent to the modified Korteweg-de Vries (mKdV) equation. This is best seen in terms

of the arc-length l of the curve, rather than β, since the corresponding equation for the

extrinsic curvature takes the standard mKdV form [73]

∂H

∂t
= H ′′′(l) +

3

2
H2H ′(l) , (B.4)
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where prime denotes here the derivative with respect to l. In this context, W is naturally

identified with the first conserved quantity of the mKdV equation. More generally, one

can show that choosing W as any one of the higher conserved quatities of the mKdV

equation (B.4), and U according to the relation (B.3), amounts to reducing the general

evolution (B.2) for the curvature into integrable equations that coincide with the other

members of mKdV hierarchy.

Finally, we note for completeness that several other type of integrable systems have

been obtained in the literature by considering evolutions of curves in two or higher dimen-

sional spaces, which may also be curved, via general evolutions of the form (B.1). None of

these, however, can accommodate the mean curvature flow in two or higher dimensional

ambient spaces.

C. Resistive diffusion of magnetic fields

In this appendix we review the emergence of the mean curvature flow for planar curves via

dimensional reduction of the magneto-hydrodynamic equations for time dependent force-

free magnetic fields in R3, following ref. [54].

Consider the resistive diffusion of a magnetic field ~B(~x, t) in a medium (plasma), which

is free to move with velocity ~v(~x, t) to accommodate the changing magnetic configuration

in real time. The basic magneto-hydrodynamic equation controlling the process is

∂ ~B

∂t
+ η~∇× (~∇× ~B) = ~∇× (~v × ~B) , (C.1)

where η is the constant resistivity of the medium. It provides a good approximation to

the real world in the limit of vanishing gas pressure when the magnetic field obeys the

force-free condition (~∇ × ~B) × ~B = 0. Thus, one is led to consider magnetic fields of the

form

~∇× ~B = a ~B , (C.2)

where a(~x, t) is a scalar function satisfying the special relation

( ~B · ~∇)a = 0 (C.3)

so that the source free Maxwell equation ~∇ · ~B = 0 is obeyed. The case of constant a in a

static medium is trivial and corresponds to an exponentially decaying field satisfying the

linear equation ∂ ~B/∂t + ηa2 ~B = 0. In the following we will be concerned with magnetic

fields with non-constant a.

The relations (C.1), (C.2) and (C.3) form, in general, a non-linear coupled system of

seven equations for seven unknown ( ~B,~v, a) that fully determine the resistive diffusion of a

force-free magnetic field in passive medium. Here we consider their reduction to one spatial

direction, say z, by assuming that the magnetic field takes the special form

~B(z, t) = (B0cosβ(z, t), B0sinβ(z, t), 0) , (C.4)
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where B0 is constant that can be set equal to 1, whereas the velocity in the medium is

taken to be

~v = (0, 0, vz(z, t)) . (C.5)

Then, the magneto-hydrodynamic equations reduce to the following simpler system for the

unknown functions β and vz,

η

(

∂β

∂z

)2

+
∂vz

∂z
= 0 , (C.6)

∂β

∂t
− η

∂2β

∂z2
+ vz

∂β

∂z
= 0 , (C.7)

whereas the function a, which is also considered as function of z and t, is determined by

a(z, t) = −∂β

∂z
. (C.8)

Thus, one is only left to determine β and vz.

Considering vz(z, t) as function of β(z, t) and t, and defining the quantity

H(β, t) =
∂vz(β, t)

∂β
, (C.9)

it follows that the system of equations (C.6) and (C.7) take the equivalent form

η
∂β

∂z
+ H(β, t) = 0 , (C.10)

η
∂H

∂t
= H2

(

∂2H

∂β2
+ H

)

. (C.11)

According to the ansatz (C.4), the magnetic field ~B(~x, t) is uniform on the z = constant

planes and changes direction as one moves across these planes. Close inspection with

the mean curvature flow of planar curves shows that −z/η represents the arc-length of a

virtual curve, as measured from the origin of coordinates, z = 0, β is the slope and H(β)

the extrinsic curvature at each point of the curve. The magnetic field on the z = constant

planes, B0(cosβ, sinβ), provides the tangent vector to such curves at different points and

the function a(z) equals to H/η. Finally, the velocity of the medium, vz(z), is nothing

else but the (Euler-Bernoulli) elastic energy of the curve segment of length z/η, assuming

that the velocity vanishes at z = 0. Then, in this context, the evolution equation (C.11)

coincides with equation (3.13) for the extrinsic curvature of the deforming virtual curve

with respect to the rescaled time t/η. Any solution of the mean curvature flow gives rise

to a process for the resistive diffusion of force-free magnetic fields in R3.

A typical initial value problem for these equations is defined by the following conditions

β(z, 0) = −β(−z, 0) ,
∂β(z, 0)

∂z
> 0 (C.12)

for t = 0, as −∞ < z < ∞, together with the boundary conditions

β(±∞, t) = ±β0 (C.13)
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for all t ≥ 0, having finite β0 independent of t; the initial and boundary conditions for

vz(z, t) follow from equation (C.6). The direction of ~B is held fixed at z = ±∞ for all time

by the above boundary conditions, experiencing an overall rotation by 2β0 from one end

to the other. An interesting question that arises in this context, and has applications in

modeling the eruption of solar flares, is to determine the conditions under which H(β, t)

becomes infinite at some time. According to the analysis of ref. [54], a modest criterion

is provided by comparing 2β0 to π. If 2β0 < π, ~B(z, t) will evolve toward a uniform

field irrespective of the initial value β(z, 0). If 2β0 > π, ~B(z, t) will develop infinite field

gradient after some time, irrespective of the initial value β(z, 0), thus leading to infinite H

by equation (C.10). The marginal case 2β0 = π includes the steady state solution

~B(z) = (±B0 sech(Az), B0 tanh(Az), 0) , (C.14)

vz(z) = −ηA tanh(Az) , a(z) = ∓A sech(Az) (C.15)

that corresponds to the translating soliton of the mean curvature flow on the plane.

It is quite interesting, in many respects, that apart from the translating soliton other

simple solutions of these equations were constructed in ref. [54], including the paper-clip

model (in modern language). Scaling solutions (self-shrinkers and expanders) were also

investigated there to some extend. There is appropriate mention to them in the main text

of our paper.
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[68] I. Affleck and A.W.W. Ludwig, Universal noninteger ‘ground state degeneracy’ in critical

quantum systems, Phys. Rev. Lett. 67 (1991) 161.

[69] D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems

at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197].

[70] M.R. Gaberdiel, D-branes from conformal field theory, hep-th/0201113.

[71] C. Bachas and M. Gaberdiel, Loop operators and the Kondo problem, JHEP 11 (2004) 065

[hep-th/0411067].

[72] L. Eisenhart, Riemannian geometry, Princeton University Press, Princeton, New Jersey

(1964).

[73] R.E. Goldstein and D.M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed

curves in the plane, Phys. Rev. Lett. 67 (1991) 3203;

K. Nakayama, H. Segur and M. Wadati, Integrability and the motion of curves, Phys. Rev.

Lett. 69 (1992) 2603.

– 73 –

http://jhep.sissa.it/stdsearch?paper=10%282001%29029
http://arxiv.org/abs/hep-th/0108075
http://jhep.sissa.it/stdsearch?paper=01%282003%29073
http://arxiv.org/abs/hep-th/0211063
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA21%2CL195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA21%2C501
http://arxiv.org/abs/math.AP/0102088
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C67%2C161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C030402
http://arxiv.org/abs/hep-th/0312197
http://arxiv.org/abs/hep-th/0201113
http://jhep.sissa.it/stdsearch?paper=11%282004%29065
http://arxiv.org/abs/hep-th/0411067
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C67%2C3203
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C69%2C2603
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C69%2C2603

